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1 Introduction

This paper examines how financial constraints targeting a specific housing market segment

impact house price formation. A growing class of “targeted” policies aim to cool a red-hot

housing segment rather than the overall market. In Toronto and Vancouver, a higher down-

payment has been required for homes purchased for over $1M. In New York and London,

so-called “mansion taxes” have been imposed on purchases of all homes valued over $1M

(USD) (since 1989) and over £1.5M (GBP) (since 2014), respectively.1 While varied in their

design, these policies impose additional financial constraints on prospective homebuyers in

a particular segment relative to those in other segments, which in turn can affect a seller’s

decision to list a house, their choice of asking price, and the process of final price determi-

nation. The central role of financial constraints makes them an appealing macroprudential

vehicle for policymakers to intervene in housing markets, often for the purpose of “[ensuring]

that shocks from the housing sector do not spill over and threaten economic and financial

stability” (IMF 2014).2 While financial constraints represent a recurring theme in the fi-

nance literature, there remains no micro analyses of the links between financial constraints

and search behavior among housing market participants. Moreover, policies targeting a par-

ticular housing segment have just begun to attract serious attention from economists (e.g.,

Kopczuk and Munroe 2015). This paper fills the gap in the literature by examining how

financial constraints affect price formation in the targeted segment of a frictional housing

market. Our empirical methodology exploits a natural experiment arising from a mortgage

insurance policy change implemented in Canada in 2012. The interpretation of our results is

motivated by a search-theoretic model of sellers competing for financially constrained buyers.

Canada experienced one of the world’s largest modern house price booms, with house

prices more than doubling between 2000 and 2012. In an effort to cool this unprecedentedly

1Million dollar homes are not the mansions they used to be. In Toronto, a $1M (CAD) house represents the
86th percentile in 2012 but the 58th percentile in 2017. Furthermore, in 2019, a $1M (USD) home represents
the 52nd percentile in San Francisco and the 33rd percentile in Manhattan among homes purchased with
mortgages.

2Kuttner and Shim (2016) document 94 actions on the loan-to-value ratio and 45 actions on the debt-
service-to-income ratio in 60 countries between 1980–2012.
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long boom, the government implemented the so-called “million dollar” policy that restricts

access to mortgage insurance when the purchase price of a home exceeds one million Canadian

dollars ($1M). Note that lenders are required to insure mortgages with loan-to-value (LTV)

ratios over 80 percent. As such, the minimum downpayment jumps from 5 to 20 percent of

the entire transaction price at a threshold of $1M, increasing the minimum downpayment

by $150,000 for million dollar homes. The existence or absence of bunching around the

threshold should provide compelling and transparent evidence about how home buyers and

sellers respond to a targeted financial constraint.

Understanding the mechanisms that generate bunching requires an equilibrium analysis

of a two-sided market. To this end, we preface the empirical work with a search-theoretic

model that features financial constraints on the buyer side.3 Sellers pay a cost to list their

house and post an asking price, and buyers allocate themselves across sellers subject to

search frictions governed by a many-to-one meeting technology. Prices are determined by

an auction mechanism: a house is sold at the asking price when a single buyer arrives; but

to the highest bidder when multiple buyers submit offers to purchase the same house. In

that sense, our model draws from the competing auctions literature (McAfee 1993, Peters

and Severinov 1997, Julien, Kennes, and King 2000, Albrecht, Gautier, and Vroman 2014,

Lester, Visschers, and Wolthoff 2015). The distinguishing feature of the model is that the

million dollar policy tightens the financial constraints faced by a subset of buyers and limits

how much they can bid on a house.4

We characterize the pre- and post-policy equilibria and derive a set of empirical predic-

tions. The post-policy equilibrium features a mass of sellers with asking prices at the $1M

threshold. These price adjustments can come from either side of $1M. In some circumstances,

3Financial constraints and search frictions represent recurring themes in the housing literature. Financial
constraints are emphasized in Stein (1995), Lamont and Stein (1999), Ortalo-Magne and Rady (2006), and
Favilukis, Ludvigson, and Nieuwerburgh (2017), among others, whereas search frictions play a central role in
Wheaton (1990), Williams (1995), Krainer (2001), Genesove and Han (2012), Diaz and Jerez (2013), Head,
Lloyd-Ellis, and Sun (2014), and Head, Lloyd-Ellis, and Stacey (2018). The interaction between search and
financial frictions is a distinguishing feature of our analysis.

4Others have studied auction mechanisms with financially constrained bidders (Che and Gale 1996a,b,
1998; Kotowski 2016), but to our knowledge this is the first paper to consider bidding limits in a model of
competing auctions.
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sellers lower the asking price from above $1M in order to attract both constrained and un-

constrained buyers to compete for their homes. In other circumstances, sellers increase the

asking price from below $1M to extract a higher payment in bilateral situations. In both

cases, the policy generates an excess mass of homes listed at $1M. As the bunching response

passes through to the sales price distribution, however, the effect on sales prices is mitigated

by search frictions and bidding wars. For example, even though some sellers lower the asking

price to $1M, the induced competition among constrained and unconstrained buyers creates

a heated market just under $1M that both pushes the sales price above $1M and leads to

shorter time-on-the market.

Ultimately, the magnitude of the impact of the policy on prices is an empirical question.

We test the model’s predictions using the 2010-2013 housing market transaction data in

the Greater Toronto Area, Canada’s largest housing market. This market provides an ideal

setting for this study for two reasons. First, home sellers in Toronto typically initiate the

search process by listing the property and specifying a date on which offers will be considered

(often 5-7 days after listing). This institutional practice matches well with our model of

competing auctions. Second, the million dollar policy caused two discrete changes in the

market: one at the time the policy was implemented, and another at the $1M threshold. The

market thus provides a natural experimental opportunity for examining the price response

to targeted financial constraints.

Figure 1 presents the distribution of listings (left column) and sales (right column) in

the segments around the $1M threshold. Panels A and B display frequency counts of asking

prices in each $5,000 dollar bin during the pre- and post-policy periods, respectively.5 In

both periods, there is a substantial mass of listings right below $1M, possibly due to a

psychological bias associated with the million dollar threshold. Panels C and F net out the

time-invariant threshold effects by presenting the difference in the frequency of listings and

5The figure shows the raw frequency counts of Toronto homes for one year prior to the July 12th, 2012
policy implementation (the pre-policy period) and one year after the implementation (the post-policy period).
The frequency counts were created by sorting the data by either asking or sales price and grouping into $5,000
dollar bins. The figure is restricted to within $100,000 dollars of the $1M policy threshold.
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sales between the post- and pre-policy periods, along with confidence interval bars.6 The

results are striking. First, there is a substantial and statistically significant positive jump

in the number of listings in the $995,000 – $999,999 bin, suggesting that the policy induces

excess bunching of listings at $1M. Second, this excess bunching appears to come from both

sides of the threshold, as reflected by the reduction in the number of homes listed in bins

just to the left and right of the million dollar bin. Finally, the mass of sales in the million

dollar segment is much less pronounced, and the difference is statistically insignificant. The

evidence here, in its most descriptive form, lends support to the key implications of our

model and forms the basis for our empirical estimation design.

Despite the appealing first-cut evidence presented in Figure 1, identifying the million

dollar policy’s impact on asking and sales prices is difficult for several reasons. First, housing

composition may have shifted around the time the policy was implemented. As a result,

changes to the distributions of prices between pre- and post-policy periods may simply

reflect the changing characteristics of houses listed/sold rather than buyers’ and sellers’

responses to the policy. Second, the implementation of the policy coincided with a number

of accompanying government interventions,7 complicating the challenge of attributing any

changes in the price distributions to the million dollar policy.

Our solution relies on a two-stage estimation procedure that examines changes in the

price distribution. First, leveraging the richness of our data on house characteristics and

using the well-known reweighting approach introduced by DiNardo, Fortin, and Lemieux

(1996), we decompose the observed before-after-policy change in the distribution of house

prices into: (1) a component that is due to changes in house characteristics; and (2) a

component that is due to changes in the price structure. The latter represents the quality-

adjusted changes in the distribution of house prices that would have prevailed between

6Confidence bars were created by bootstrapping 399 random samples with replacement.
7The law that implemented the million dollar policy also reduced the maximum amortization period

from 30 years to 25 years for insured mortgages; limited the amount that households can borrow when
refinancing to 80 percent (previously 85 percent); lowered the maximum total debt service ratio (all housing
expenses, credit card, and car loan payments relative to income) from 45% to 44%; and set a maximum
gross debt service ratio (mortgage payments, property taxes, and heating costs relative to income) at 39%.
Source: “Harper Government Takes Further Action to Strengthen Canada’s Housing Market.” Department
of Finance Canada, June 21, 2012.
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Figure 1
Frequency Counts of Asking and Sales Prices in the Pre- vs. Post-Policy Periods

Notes: The figure uses data on asking and sales prices for the city of Toronto in the year before (pre-period)
and after (post-period) the implementation of the million dollar policy. Panels A, B, D, and E show frequency
counts for $5,000 bins within $100,000 dollars of the policy threshold for the indicated period. Panels C and
F show the difference in the frequency counts for the post- vs pre-periods in each bin. The confidence bars
in Panels C and F are constructed via bootstrap for 399 random samples with replacement.
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the pre- and post-policy periods if the characteristics of houses remained the same as in

the pre-policy period. Next, we measure the effects of the $1M policy by comparing the

actual changes in the quality-adjusted price distributions to counterfactual changes in the

quality-adjusted price distributions that would have prevailed in the absence of the policy,

separately for asking and sales prices. We employ a recently developed bunching estimation

approach (Chetty et al. 2011, Kleven and Waseem 2013).8 The key idea is to use price

segments that are not subject to the policy’s threshold effects to form a counterfactual near

the $1M threshold. By comparing the counterfactual changes in distributions with the actual

changes in distributions around $1M, bunching estimation allows us to difference out impacts

of contemporaneous factors on house prices, such as other mortgage rule changes and market

trends. Further, working with changes in price distributions over time allows us to net out

any time-invariant threshold price effects unrelated to the policy, such as psychological bias.

Our main findings are the following. In the single-family-housing market, the asking

price distribution features large and sharp excess bunching right at the $1M threshold with

corresponding holes both above and below $1M. In particular, the policy adds 86 homes

to listings in the million dollar bin (from $995,000 to $999,999) in the post-policy year for

the city of Toronto, which represents about a 38 percent increase relative to the number of

homes that would have been listed in this $5,000 bin in the absence of the policy. Among

these, half would have otherwise been listed below $995,000; the other half above $1M. In

contrast, the policy adds only about 11 homes to sales in the million dollar bin, which is

economically small and statistically insignificant. These findings are robust to an extensive

set of specification checks, including a counterfactual constructed using only data below $1M,

alternative functional forms, estimation windows and excluded regions, different definitions

of pre- and post-policy periods, and allowing for possible spillovers near the $1M segment.

We also find similar patterns in the condominium and townhouse markets.

8In the context of real estate, Kopczuk and Munroe (2015) and Slemrod, Weber, and Shan (2017) analyse
bunching behavior in sales volume induced by discontinuities in real-estate transfer taxes; Best et al. (2018)
exploit variation in interest rates that produce notches in the loan-to-value ratio at various thresholds; and
DeFusco and Paciorek (2017) estimate leverage responses to a notch created by the conforming loan limit in
the U.S. Our approach differs from these related studies in that we consider a two-sided bunching estimator
to accommodate both possibilities explored in our theoretical framework.
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The lack of excess bunching in the sales price, together with the sharp bunching in

the asking price, suggests that the intended cooling impact of the policy is mitigated by

sellers’ listing decisions and buyers’ bidding behavior. Consistent with this interpretation,

we find that housing segments right below the $1M threshold experience a shorter time-on-

the-market and a higher incidence of bidding wars, confirming the notion that the million

dollar policy created a “red hot” market for homes listed just below $1M.9

Together, our findings contribute to a better understanding of policies that use targeted

financial constraints to temper a heated market segment. We find that the million dollar

policy did not achieve the specific goal of cooling the housing boom in the million dollar

segment. This is not because market participants did not respond to the policy. In fact,

quite the opposite appears to be true: it is precisely the strategic responses of home sellers

and buyers that interact to undermine the intended impact of the policy on sales prices. Our

analysis thus points to the importance of designing policies that recognize the endogenous

responses of buyers and sellers in terms of listing strategies, search decisions and bidding

behavior.

While our main focus is on segments around $1M, we also go beyond the bunching

estimation and examine the policy effects in segments further above $1M. An extensive

margin response would imply that some transactions above $1M did not occur due to the

additional financial constraint. An intensive margin response would imply depressed prices

in at least some segments of the market above $1M. Either of these responses should manifest

as a systematic discrepancy between the counterfactual post-policy price distribution and

the observed post-policy price distribution for price bins above the $1M threshold. Using a

distribution decomposition method, we do not find such discrepancies, which suggests that

transactions above $1M are not markedly affected by the policy.

Despite failing to curb house price appreciation, the policy may have nonetheless suc-

ceeded in improving the creditworthiness of homebuyers. A key implication of the model

is that, when facing the $1M policy, less constrained buyers have an advantage over con-

9See “Ottawa’s new rules creating ‘red hot’ market for homes under $999,999.” Financial Post. July 3,
2013.
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strained ones in multiple offer situations and hence have incentive to participate in the

segment below $1M. Consistent with this, we observe a large share of homebuyers with LTV

ratios below 80% even in the segment just below $1M after the implementation of the pol-

icy. Thus, the policy improves borrower creditworthiness in segments above $1M without

compromising borrower creditworthiness in the segment slightly below $1M via its influence

on buyers’ and sellers’ search and listing behaviors. More broadly, by reallocating million

dollar homes from more constrained to less constrained homebuyers, the policy effectively

prevents lenders from making riskier loans. As such, our analysis is also related to the recent

literature on macroprudential interventions in mortgage markets. Significant contributions

have been made towards our understanding of how these policies affect mortgage market

outcomes (Allen et al. 2016; DeFusco, Johnson, and Mondragon 2019), as well as financial

stability and mortgage market efficiency (Elenev, Landvoigt, and Van Nieuwerburgh 2016;

Van Bekkum, Gabarro, and Irani 2017; Elenev, Landvoigt, and Van Nieuwerburgh 2018;

Acharya, Berger, and Roman 2018). From that perspective, the effects of the $1M policy

may help reduce the likelihood of mortgage crises and safeguard the stability of the financial

system, which would be welfare enhancing in the long run. Studying such benefits by quan-

tifying the effects of the policy on mortgage market outcomes may prove to be an important

area for future research.10

2 Background

2.1 Mortgage Insurance

Mortgage insurance is an instrument used to transfer mortgage default risk from the lender

to the insurer and represents a key component of housing finance in many countries including

10As preliminary evidence, we observe that in aggregate Canada exhibited a decrease in the fraction of
new mortgage holders with a credit score below 660 after 2012. See Panel A of Figure A1 in Appendix A.
We do not examine the policy effects on credit market outcomes for two reasons. First, we do not have
micro-level mortgage data. Second, default is not widespread in Canada due to its highly regulated financial
system. Panel B of Figure A1 shows the difference in the delinquency rates (defined as overdue on a payment
by 90 days or more) between Canada and the U.S. over time. In 2012, the fraction of all mortgages with
delinquencies was 7.14 percent in the U.S., but only 0.32 percent in Canada (and 0.23 percent in Toronto).
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the United States, the United Kingdom, the Netherlands, Hong Kong, France, and Australia.

These countries share two common features with Canada: (i) the need to insure high LTV

mortgages, and (ii) the central role of the government in providing such insurance. The

combination of these two requirements gives the government the ability to influence the

financial constraints faced by homebuyers.

In Canada, all financial institutions regulated by the Office of the Superintendent of

Financial Institutions (OSFI) are required to purchase mortgage insurance for any mort-

gage loan with an LTV above 80 percent. The mortgage insurance market is comprised of

the government-owned Canada Mortgage and Housing Corporation (CMHC) as well as two

private insurers, Genworth Financial Mortgage Insurance Company Canada and Canada

Guaranty. All three institutions benefit from guarantees provided by the Canadian govern-

ment and therefore are subject to federal regulations through the OFSI.

In practice, while it is possible for buyers to obtain uninsured residential mortgages

with a loan-to-value ratio greater than 80 percent from unregulated lenders, we find that

private lending accounted for only 4% of all loans in the Greater Toronto Area in 2013

and this sector did not experience any noticeable growth around the million dollar policy

period. The reason is that, compared to traditional mortgages from regulated lenders, private

mortgages on average have one-fifth duration, over three times higher interest rates, and loan

amounts that are one-third of the size. Hence they operate in a small disparate niche corner

of the Canadian mortgage market.11 In addition, anecdotal evidence suggests that it is

generally difficult for a borrower to obtain a second mortgage at the time of origination

to reduce the downpayment of the primary loan below 20 percent in Canada, making this

strategic circumvention of macroprudential regulation less of a concern. The pervasiveness

of government-backed mortgage insurance within the housing finance system makes it an

appealing macroprudential policy tool for influencing housing finance and housing market

outcomes.

11See ?? for the statistics reported here and relevant discussions.
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2.2 The Million Dollar Policy

Figure 2 plots the national house price indices for Canada and the U.S. reflecting Robert

Shiller’s observation in 2012 that “what is happening in Canada is kind of a slow-motion

version of what happened in the U.S.”12 As home prices in Canada continued to escalate post-

financial crisis, the Canadian government became increasingly concerned that rapid price

appreciation would eventually lead to a severe housing market correction.13 To counter the

potential risks associated with this house price boom, the Canadian government implemented

several rounds of housing market macroprudential regulation, all through changes to the

mortgage insurance rules.14 This paper examines the impact of the so-called “million dollar”

policy that prevents regulated lenders from offering mortgage loans with LTV ratios above

80 percent when the purchase price is $1M or more. The objective of the regulation was to

curb house price appreciation in high price segments of the market and at the same time

improve borrower creditworthiness. The law was announced on June 21, 2012, and effected

July 9, 2012. Anecdotal evidence suggests that the announcement of the policy was largely

unexpected by market participants.15

3 Theory

To understand how the million dollar policy affects strategies and outcomes in the housing

market, we present a two-sided search model that incorporates auction mechanisms and fi-

nancially constrained buyers. We characterize pre- and post-policy directed search equilibria

and derive a set of empirical implications. The purpose of the model is to guide the empirical

12“Why a U.S.-style housing nightmare could hit Canada.” CBCNews. September 21, 2012.
13In 2013, Jim Flaherty, Canada’s Minister of Finance from February 2006 to March 2014, stated: “We

[the Canadian government] have to watch out for bubbles - always - . . . including [in] our own Canadian
residential real estate market, which I keep a sharp eye on.” Sources: “Jim Flaherty vows to intervene in
housing market again if needed.” The Globe and Mail, November 12, 2013.

14These changes included increasing minimum down payment requirements (2008); reducing the maximum
amortization period for new mortgage loans (2008, 2011, 2012); reducing the borrowing limit for mortgage
refinancing (2010, 2011, 2012); increasing homeowner credit standards (2008, 2010, 2012); and limiting
government backed mortgage insurance to homes with a purchase price of less than one million Canadian
dollars (2012).

15See “High-end mortgage changes seen as return to CMHC’s roots.” The Globe and Mail, June 23, 2012.
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Figure 2
House Price Indices for Canada and the U.S.

Notes: Monthly house price indices from S&P Case-Shiller (US) and Teranet (Canada). All series
downloaded from Datastream and are indexed to 100 in 2000. Series ID numbers: USCSHP20F and
CNTNHPCMF.

analyses that follow. As such, we present a simple model of directed search with auctions

and bidding limits that features heterogeneity only along the financial constraints dimension.

The clean and stylized nature of the model allows for a quick understanding of the intuition

underlying plausible strategic reactions among buyers and sellers to the implementation of

the policy.

3.1 Environment

Agents. There is a fixed measure B of buyers, and a measure of sellers determined by free

entry. Buyers and sellers are risk neutral. Each seller owns one indivisible house, their value

of which is normalized to zero. Buyer preferences are identical; a buyer assigns value v > 0

to owning the home. No buyer can pay more than some fixed u ≤ v, which can be viewed

as a common income constraint or debt-service constraint.16

Million dollar policy. The introduction of the million dollar policy causes some buyers

16A non-binding constraint (i.e., u > v) would have the same implications as the case where u = v in the
analysis that follows.
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to become more severely financially constrained. Post-policy, a fraction Λ of buyers are un-

able to pay more than c, where c < u. Parameter restrictions c < u ≤ v can be interpreted

as follows: all buyers may be limited by their budget sets, but some are further financially

constrained by a binding wealth constraint such as a minimum downpayment requirement

following the implementation of the policy.17 Buyers with financial constraint c are here-

inafter referred to as constrained buyers, whereas buyers willing and able to pay up to u are

termed unconstrained.

Search and matching. The matching process is subject to frictions which we model

with an urn-ball meeting technology. Each buyer meets exactly one seller. From the point of

view of a seller, the number of buyers she meets is a random variable that follows a Poisson

distribution. The probability that a seller meets exactly k = 0, 1, . . . buyers is

π(k) =
e−θθk

k!
, (1)

where θ is the ratio of buyers to sellers and is often termed market tightness. The probability

that exactly j out of the k buyers are unconstrained is

φk(j) =

(
k

j

)
(1− λ)jλk−j, (2)

which is the probability mass function for the binomial distribution with parameters k and

1− λ, where λ is the share of constrained buyers. Search is directed by asking prices in the

following sense: sellers post a listing containing an asking price, p ∈ R+, and buyers direct

their search by focusing exclusively on listings with a particular price. As such, θ and λ

are endogenous variables specific to the group of buyers and sellers searching for and asking

price p.

Price determination. The price is determined in a sealed-bid second-price auction.

The seller’s asking price, p ∈ R+, is interpreted as the binding reserve price. If a single

17We model the implied bidding limit rather than the downpayment constraint explicitly. The interpre-
tation is as follows: the discontinuous downpayment requirement at $1M effected by the policy means that
buyers with wealth levels less than $200,000 must bid less than $1M.
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bidder submits an offer at or above p, he pays only p. In multiple offer situations, the bidder

submitting the highest bid at or above p wins the house but pays either the second highest

bid or the asking price, whichever is higher. When selecting among bidders with identical

offers, suppose the seller picks one of the winning bidders at random with equal probability.

Free entry. The measure of sellers is determined by free entry so that overall market

tightness is endogenous. Supply side participation in the market requires payment of a fixed

cost x, where 0 < x < c. It is worthwhile to enter the market as a seller if and only if the

expected revenue exceeds the listing cost.

3.2 Equilibrium

3.2.1 The Auction

When a seller meets k buyers, the auction mechanism described above determines a game

of incomplete information because bids are sealed and bidding limits are private. In a

symmetric Bayesian-Nash equilibrium, it is a dominant strategy for buyers to bid their

maximum amount, c or u. When p > c (p > u), bidding limits preclude constrained (and

unconstrained) buyers from submitting sensible offers.

3.2.2 Expected payoffs

Expected payoffs are computed taking into account the matching probabilities in (1) and

(2). These payoffs, however, are markedly different depending on whether the asking price,

p, is above or below a buyer’s ability to pay. Each case is considered separately in Appendix

B.1. In the submarket associated with asking price p and characterized by market tightness

θ and buyer composition λ, let V s(p, λ, θ) denote the sellers’ expected net payoff. Similarly,

let V c(p, λ, θ) and V u(p, λ, θ) denote the expected payoffs for constrained and unconstrained

buyers.

For example, if the asking price is low enough to elicit bids from both unconstrained and

13



constrained buyers, the seller’s expected net payoff is

V s(p ≤ c, λ, θ) = −x+ π(1)p+
∞∑
k=2

π(k)

{
[φk(0) + φk(1)] c+

k∑
j=2

φk(j)u

}
.

Substituting expressions for π(k) and φk(j) and recognizing the power series expansion of

the exponential function, the closed-form expression is

V s(p ≤ c, λ, θ) = −x+ θe−θp+
[
1− e−θ − θe−θ

]
c

+
[
1− e−(1−λ)θ − (1− λ)θe−(1−λ)θ

]
(u− c).

The second term reflects the surplus from a transaction if they meet only one buyer. The

third and fourth terms reflect the surplus when matched with two or more buyers, where the

last term is specifically the additional surplus when two or more bidders are unconstrained.

The expected payoff for a buyer, upon meeting a particular seller, takes into account the

possibility that the seller meets other constrained and/or unconstrained buyers as per the

probabilities in (1) and (2). The expected payoff for a constrained buyer in this case is

V c(p ≤ c, λ, θ) = π(0)(v − p) +
∞∑
k=1

π(k)φk(0)
v − c
k + 1

and the closed-form expression is

V c(p ≤ c, λ, θ) =
e−(1−λ)θ − e−θ

λθ
(v − c) + e−θ(c− p).

The first term is the expected surplus when competing for the house with other constrained

bidders; the last term reflects the possibility of being the only buyer. Note that whenever an

unconstrained buyer visits the same seller, the constrained buyer is outbid with certainty and

loses the opportunity to purchase the house. Finally, the expected payoff for an unconstrained
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buyer can be similarly derived to obtain

V u(p ≤ c, λ, θ) = π(0)(v − p) +
∞∑
k=1

π(k)

[
φk(0)(v − c) +

k∑
j=1

φk(j)
v − u
j + 1

]

=
1− e−(1−λ)θ

(1− λ)θ
(v − u) + e−(1−λ)θ(u− c) + e−θ(c− p).

The first term is the expected surplus when competing for the house with other unconstrained

bidders, and the second term is the additional surplus when competing with constrained

bidders only. In that scenario, the unconstrained bidder wins the auction by outbidding

the other constrained buyers, but pays only c in the second-price auction. The third term

represents the additional payoff for a monopsonist. Closed-form solutions for the other cases

are derived in Appendix B.1.

3.2.3 Directed Search

Agents perceive that both market tightness and the composition of buyers depend on the

asking price. To capture this, suppose agents expect each asking price p to be associated

with a particular ratio of buyers to sellers θ(p) and fraction of constrained buyers λ(p). We

will refer to the triple (p, λ(p), θ(p)) as submarket p. When contemplating a change to her

asking price, a seller anticipates a corresponding change in the matching probabilities and

bidding war intensity via changes in tightness and buyer composition. This is the sense in

which search is directed. It is convenient to define V i(p) = V i(p, λ(p), θ(p)) for i ∈ {s, u, c}.

Definition 1. A directed search equilibrium (DSE) is a set of asking prices P ⊂ R+; a

distribution of sellers σ on R+ with support P, a function for market tightness θ : R+ →

R+ ∪ +∞, a function for the composition of buyers λ : R+ → [0, 1], and a pair of values

{V̄ u, V̄ c} such that:

1. optimization:

(i) sellers: ∀p ∈ R+, V s(p) ≤ 0 (with equality if p ∈ P);

(ii) unconstrained buyers: ∀p ∈ R+, V u(p) ≤ V̄ u (with equality if θ(p) > 0 and

λ(p) < 1);
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(iii) constrained buyers: ∀p ∈ R+, V c(p) ≤ V̄ c (with equality if θ(p) > 0 and λ(p) > 0);

where V̄ i = maxp∈P V
i(p) for i ∈ {u, c}; and

2. market clearing:

∫
P
θ(p) dσ(p) = B and

∫
P
λ(p)θ(p) dσ(p) = ΛB.

The definition of a DSE is such that for every p ∈ R+, there is a θ(p) and a λ(p). Part

1(i) states that θ is derived from the free entry of sellers for active submarkets (i.e., for

all p ∈ P). Similarly, parts 1(ii) and 1(iii) require that, for active submarkets, λ is derived

from the composition of buyers that find it optimal to search in that submarket. For inactive

submarkets, parts 1(ii) and 1(iii) further establish that θ and λ are determined by the optimal

sorting of buyers so that off-equilibrium beliefs are pinned down by the following requirement:

if a small measure of sellers deviate by posting asking price p 6∈ P, and buyers optimally sort

among submarkets p ∪ P, then those buyers willing to accept the highest buyer-seller ratio

at price p determine both the composition of buyers λ(p) and the buyer-seller ratio θ(p). If

neither type of buyer finds asking price p acceptable for any positive buyer-seller ratio, then

θ(p) = 0, which is interpreted as no positive measure of buyers willing to search in submarket

p. The requirement in part 1(i) that V s(p) ≤ 0 for p 6∈ P guarantees that no deviation to an

off-equilibrium asking price is worthwhile from a seller’s perspective. Finally, part 2 of the

definition makes certain that all buyers search.

3.2.4 Pre-Policy Directed Search Equilibrium

We first consider the initial setting with identically unconstrained buyers by setting Λ = 0.18

Buyers in this environment direct their search by targeting the asking price that maximizes

their expected payoff. Because the buyer correctly anticipates the free entry of sellers, the

18A DSE when Λ = 0 is defined according to Definition 1 except that we impose λ(p) = 0 for all p ∈ R+

and ignore condition 1(iii).
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search problem can be written

V̄ u = max
p,θ

V u(p, 0, θ) s.t. V s(p, 0, θ) = 0. (P0)

We construct a DSE with a single active submarket with asking price and market tightness

determined by the solution to problem P0, denoted {p0, 0, θ0}.19 Given the auction mech-

anism and the role of the asking price, a strictly positive expected surplus from searching

requires p ≤ u. If the solution is interior it satisfies the following first-order condition and

the constraint:

x = [1− e−θ∗u − θ∗ue−θ
∗
u ]v (3)

θ∗ue
−θ∗up∗u = [1− e−θ∗u − θ∗ue−θ

∗
u ](v − u). (4)

If this solution is infeasible because of financial limit u, the solution is instead u and θu,

where θu satisfies the free entry condition V s(u, 0, θu) = 0, or

x = [1− e−θu ]u. (5)

The solution to problem P0 can therefore be summarized as p0 = min{p∗u, u} and θ0 satisfying

V s(p0, 0, θ0) = 0.

The following proposition provides a partial characterization of the pre-policy DSE con-

structed using this solution as per the algorithm in Appendix B.2.

Proposition 1. There is a DSE with P = {p0}, θ(p0) = θ0, σ(p0) = B/θ0 and V̄ u =

V u(p0, 0, θ0).

As buyers’ ability to pay approaches their willingness to pay (i.e., as u → v), the equi-

19The same active submarket can instead be determined by solving the seller’s price posting problem and
imposing free entry. Specifically, sellers set an asking price to maximize their expected payoff subject to
buyers achieving their market value V̄ u. The seller’s asking price setting problem is therefore

max
p,θ

V s(p, 0, θ) s.t. V u(p, 0, θ) = V̄ u. (P′0)

17



librium asking price tends to zero (i.e., p0 = p∗u → 0), which is the seller’s reservation value.

This aligns with standard results in the competing auctions literature in the absence of

bidding limits (McAfee 1993; Peters and Severinov 1997; Albrecht, Gautier, and Vroman

2014; Lester, Visschers, and Wolthoff 2015). When buyers’ bidding strategies are somewhat

limited (i.e., p0 = p∗u ≤ u < v), sellers set a higher asking price to capture more of the sur-

plus in a bilateral match. The equilibrium asking price is such that the additional bilateral

sales revenue exactly compensates for the unseized portion of the match surplus when two or

more buyers submit offers but are unable to bid up to their full valuation. This the economic

interpretation of equation (4). When buyers’ bidding strategies are too severely restricted

(i.e., p0 = u < p∗u), the seller’s choice of asking price is constrained by the limited financial

means of prospective buyers. Asking prices in equilibrium are then set to the maximum

amount, namely u. In this case, a seller’s expected share of the match surplus is diminished,

and consequently fewer sellers choose to participate in the market (i.e., θu > θ∗u).

If p0 = p∗u ≤ u, the equilibrium expected payoff V̄ u is independent of u (in particular,

V̄ u = θ∗ue
−θ∗uv). As long as the constraint remains relatively mild, a change to buyers’ abil-

ity to pay, u, will cause the equilibrium asking price to adjust in such a way that market

tightness and the expected sales price remain unchanged. This reflects the fact that the

financial constraint does not affect the incentive to search. When p0 = u < p∗u, the con-

straint is sufficiently severe that it affects the ability to search in that it shuts down the

submarket that would otherwise achieve the mutually desirable trade-off between market

tightness and expected price. This feature highlights the distinction between the roles of

financial constraints and reservation values, since a change to buyers’ willingness to pay, v,

would affect the incentive to search, the equilibrium expected payoff, and the equilibrium

trade-off between market tightness and expected sales price.

3.2.5 Post-Policy Directed Search Equilibrium

As in the previous section, an active submarket with p ≤ c is determined by an optimal search

strategy. The search problem of a constrained buyer takes into account the participation of
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both sellers and unconstrained buyers:

V̄ c = max
p,λ,θ

V c(p, λ, θ) s.t. V s(p, λ, θ) = 0 and V u(p, λ, θ) ≥ V̄ u. (P1)

Let {p1, λ1, θ1} denote the solution to problem P1 when V̄ u is set equal to the maxi-

mized objective of problem P0. The bidding limit once again limits the set of worthwhile

submarkets. In particular, the optimal submarket for constrained buyers must feature an

asking price less than or equal to c. If the solution is interior, it satisfies the two constraints

with equality and a first-order condition derived in Appendix B.3. This interior solution is

denoted {p∗c , λ∗c , θ∗c}. The corner solution is denoted {c, λc, θc}, where λc and θc satisfy the

free entry condition V s(c, λc, θc) = 0 and an indifference condition for unconstrained buyers

V u(c, λc, θc) = V̄ u. In summary, the solution to problem P1 is p1 = min{p∗c , c} with λ1 and

θ1 satisfying V s(p1, λ1, θ1) = 0 and V u(p1, λ1, θ1) = V̄ u.

As long as the aggregate share of constrained buyers, Λ, does not exceed λ1, we can con-

struct an equilibrium with two active submarkets associated with the asking prices obtained

by solving problems P0 and P1 in the manner described above.

Proposition 2. Suppose Λ ≤ λ1. There is a DSE with P = {p0, p1}, λ(p0) = 0, λ(p1) = λ1,

θ(p0) = θ0, θ(p1) = θ1, σ(p0) = (λ1 − Λ)B/(λ1θ0), σ(p1) = ΛB/(λ1θ1), V̄ c = V c(p1, λ1, θ1)

and V̄ u = V u(p0, 0, θ0) = V u(p1, λ1, θ1).

Intuitively, constrained buyers would prefer to avoid competition from unconstrained

buyers because they can out-bid them. For the same reason, some unconstrained buyers

prefer to search alongside constrained buyers. The equilibrium search decisions of constrained

buyers takes into account the unavoidable competition from unconstrained buyers to achieve

the optimal balance between price, market tightness, and the bidding limits of potential

auction participants.

The incentive to search alongside constrained buyers in a submarket distorted by a bind-

ing financial constraint is increasing in the share of buyers constrained by the policy. If the

fraction of constrained buyers is not too high (i.e., Λ < λ1), the DSE features partial pooling.
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That is, only some unconstrained buyers search for homes priced at p1 while the rest search

in submarket p0.20 As Λ → λ1, it can be shown that σ(p0) → 0 and the DSE converges

to one of full pooling, with all buyers and sellers participating in submarket p1. Finally, if

Λ > λ1, market clearing (part 2 of Definition 1) is incompatible with unconstrained buyer

indifference between these two submarkets, which begets the possibility of full pooling with

unconstrained buyers strictly preferring to pool with constrained buyers. We restrict atten-

tion to settings with Λ ≤ λ1 for the analytical characterization of equilibrium and rely on

numerical results for settings with Λ > λ1.21

3.3 Empirical Predictions

This section summarizes the housing market implications of the million dollar policy by

comparing the pre- and post-policy directed search equilibria. Since financial constraint c

is intended to represent the maximum ability to pay among buyers affected by the million

dollar policy, parameter c corresponds to the $1M threshold and Λ reflects the share of

potential buyers with insufficient wealth from which to draw a 20 percent downpayment.22

There are four possible cases to consider depending on whether financial constraints u

and c lead to corner solutions to problems P0 and P1. In this section we focus on the most

empirically relevant case where the financial constraint is slack in problem P0 but binds in

problem P1. In other words, we consider the possibility that pre-existing financial constraints

are mild, but that the additional financial constraint imposed by the policy is sufficiently

20The partial separation of unconstrained buyers in this case arises because the source of heterogeneity is
bidders’ ability to pay and not their willingness to pay. A similar environment with heterogeneous valuations
rather than financial means would not necessarily deliver more than one active submarket in equilibrium
(Cai, Gautier, and Wolthoff 2017).

21We construct fully pooling DSE numerically when Λ > λ1 by increasing V̄ u above the maximized
objective of problem P0 until the share of constrained buyers in the submarket that solves problem P1 is
exactly Λ. A thorough analysis of such DSE would require abandoning the analytical convenience of block
recursivity (i.e., the feature that equilibrium values and optimal strategies do not depend on the overall
composition of buyers). We sacrifice completeness for conciseness and convenience by restricting the set of
analytical results to settings with Λ ≤ λ1.

22Since the million dollar policy effectively imposes a 20 percent downpayment requirement when the
purchase price is $1M or more, c more precisely represents a bidding limit of $999,999 expressed relative to
the seller’s reservation value. So as to avoid awkward wording, we hereinafter use the $1M threshold to refer
to the price point just under $1M.
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severe. Under this assumption, the equilibrium asking prices are p0 = p∗u and p1 = c. There

are still two possible subcases, namely (i) p∗u ≤ c and (ii) p∗u > c, which we use to derive

several testable predictions that we bring to the data in Section 5.

Prediction 1. The million dollar policy motivates some sellers to change their asking price

to $1M. This asking price response corresponds to “bunching from below” if p0 < p1, or

“bunching from above” if p0 > p1.

As per Propositions 1 and 2, the set of asking prices changes from just P = {p0} pre-

policy to P = {p0, p1} post-policy. Following the introduction of the policy, some or all sellers

find it optimal to target buyers of both types by asking price p1 = c. The million dollar

policy can thus induce a strategic response among sellers in market segments near the newly

imposed financial constraint. If p0 < p1, some sellers who would have otherwise listed below

c respond to the policy by increasing their asking price to the threshold. The intuition for

bunching from below is the following: as buyers become more constrained, the distribution

of possible sales prices features fewer extreme prices at the high end. Sellers respond by

raising their asking price to effectively truncate the distribution of prices from below. The

higher price in a bilateral situation can offset (in expectation) the unseized sales revenue in

multiple offer situations arising from the additional financial constraint. Constrained buyers

tolerate the higher asking price because they face less severe competition from unconstrained

bidders in submarket p1. If instead p0 > p1, the policy induces some sellers who would have

otherwise listed above c to drop their asking price to exactly equal the threshold. In the

case of bunching from above, the reduction in asking prices is designed to attract constrained

buyers. Because there is pooling of both buyer types in submarket p1, these sellers may still

match with unconstrained buyers and sell for a price above c.

Prediction 2. Bunching at $1M in asking prices only partially passes through to the sales

price distribution because of search frictions and bidding wars.

The frictional matching process between buyers and sellers results in some homes failing

to sell. With probability e−θ1 , a seller listing a home post-policy at price p1 = c does not

21



meet even a single buyer. The auction mechanism further reduces the mass of sales relative

to listings at price c. With probability 1 − e−(1−λ1)θ1 − (1 − λ1)θ1e
−(1−λ1)θ1 , competition

among unconstrained bidders in submarket p1 escalates the sales price up to u.

This bidding war effect intensifies (diminishes) in response to the million dollar policy if

p0 > p1 (p0 ≤ p1). This is related to the ratio of unconstrained buyers to sellers and relies on

the indifference condition for unconstrained buyers between submarkets p0 and p1. If p1 < p0,

the ratio is higher in submarket p1 (i.e., θ0 < (1−λ1)θ1), which shifts the Poisson distribution

that governs the random number of unconstrained buyers meeting each particular seller in

the sense of first-order stochastic dominance. The policy therefore increases the probability

of multiple offers from unconstrained buyers and the overall share of listed homes selling for

u. The intuition for this is that unconstrained buyers enter the pooling submarket until the

lower sales price when not competing against other unconstrained bidders (that is, p1 instead

of p0) is exactly offset by the higher incidence of price escalation, resulting in indifference

between the two submarkets. If instead p0 < p1, the indifference condition for unconstrained

buyers implies the opposite, namely θ0 ≥ (1 − λ1)θ1. In that case, the policy raises asking

prices but lowers the probability of multiple offers from unconstrained buyers.

In both cases, the effect of the policy on sales prices via sellers’ revised listing strategies

(Prediction 1) is partly neutralized by the endogenous change in bidding intensity. We should

therefore expect a more dramatic impact of the million dollar policy on asking prices than

sales prices.

Prediction 3. The million dollar policy increases the probability of selling-above-asking and

shortens expected time-on-the-market for homes listed below $1M. This results in discrete

jumps in the probability of selling-above-asking (downward) and in expected time-on-the-

market (upward) at asking price $1M.

At asking price p1 = c, the presence of constrained buyers does not alter the payoff to

an unconstrained buyer. This is because, in a second price auction with reserve price ex-

actly equal to constrained buyers’ ability to pay, offers from constrained buyers affect neither

the probability of winning the auction nor the final sales price when an unconstrained buyer
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bids u. For submarkets priced above c, these constrained buyers cannot afford to participate.

Given that V̄ u is unchanged by the policy, it follows that the ratio of unconstrained buyers to

sellers is also unaffected by the policy in any submarket asking c or more. The policy, how-

ever, induces the participation of constrained buyers in submarket c and a range of inactive

submarkets below c. Submarkets that attract both constrained and unconstrained buyers

post-policy feature higher market tightness because the presence of constrained buyers does

not deter unconstrained buyers. On the contrary, unconstrained buyers are drawn to these

submarkets because they have an advantage when competing bidders face tighter financial

constraints. The resulting discontinuous drop in market tightness at asking price c can be

understood as discontinuous reductions in both the probability of selling and the probability

of receiving multiple offers and hence selling-above-asking. The inverse of the probability

of selling in the static model proxies for expected time-on-the-market in a dynamic setting.

Prediction 3 therefore summarizes the implications for time-on-the-market. Specifically, the

million dollar policy causes homes listed just below $1M to sell faster, as well as induces a

discontinuous increase in average selling time at the threshold.

In Appendix B.5, we illustrate Predictions 1, 2 and 3 by simulating a parameterized

version of the model that has been extended to incorporate a form of seller heterogeneity.

Specifically, sellers with different reservation values implement different asking price strate-

gies, which permits the characterization of equilibria featuring bunching from both above and

below simultaneously. Figures B1 and B2 plot the asking and sales price distributions. These

simulated distribution functions reveal an excess mass of listings at $1M from both above

and below the threshold (Prediction 1), and a much less pronounced excess mass of sales at

$1M (Prediction 2). Figures B3 and B4 present visualizations of Prediction 3 by plotting

expected time-to-sell and the probability of selling-above-asking as functions of the asking

price.

Our analysis so far has focused exclusively on housing market outcomes. On the norma-

tive side, the model implies that the policy reduces the social surplus derived from housing

market activity, as it affects the entry decision of sellers and hence market tightness, distort-
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ing the total number of housing market transactions.23 It is worth noting that the million

dollar policy was introduced not only to cool housing markets but also to improve finan-

cial stability and mortgage market efficiency. The latter is a central theme in the recent

macro-finance literature on macroprudential policies.24 Although the model is not designed

to assess the policy’s impact on borrowers’ creditworthiness, it nevertheless offers an im-

portant insight in this regard. In particular, less constrained buyers have an advantage

over constrained ones in multiple offer situations, and as such we would expect post-policy

homebuyers to be wealthier and hence more “creditworthy”.25

Prediction 4. An unconstrained buyer is more likely to purchase a house than a constrained

buyer following the introduction of the million dollar policy.

By reallocating million dollar homes from financially constrained buyers to less financially

constrained buyers, the policy effectively improves borrower creditworthiness and prevents

lenders form making more risky loans. A normative argument in favor or against the million

dollar policy would weigh these credit market benefits against the distortions introduced in

the housing market.

23The welfare maximizing level of housing market activity is achieved in the pre-policy DSE, provided the
pre-existing financial constraint is slack in problem P0.

24See Jeske, Krueger, and Mitman (2013), Clerc et al. (2015), Elenev, Landvoigt, and Van Nieuwerburgh
(2016), Elenev, Landvoigt, and Van Nieuwerburgh (2018) and Begenau (2019).

25Only the unconstrained search for and buy homes in segment p0 of the post-policy DSE. In submarket
p1 of the post-policy DSE, the buying probabilities for constrained and unconstrained buyers are

π(0) +

∞∑
k=1

π(k)φk(0)
1

k + 1
=
e−(1−λ1)θ1 − e−θ1

λ1θ1
and π(0) +

∞∑
k=1

π(k)

k∑
j=0

φk(j)
1

j + 1
=

1− e−(1−λ1)θ1

(1− λ1)θ1
.

The probability of success in purchasing a house for unconstrained buyers therefore exceeds that for con-
strained buyers by

1− e−(1−λ1)θ1

(1− λ1)θ1
− e−(1−λ1)θ1 − e−θ1

λ1θ1
=

1

λ1

[
1− e−(1−λ1)θ1

(1− λ1)θ1
− 1− e−θ1

θ1

]
> 0.
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3.4 Caveats about Modeling Assumptions

Further discussion of some features of the model is in order. First, the asking price is

assumed to represent a firm commitment to a minimum price, which results in a sales price

either above or at the asking price. In practice, sales prices can be above, at, and below

asking prices. Embellishing the price determination mechanism may allow for transaction

prices below asking prices without compromising the asking price-related implications of the

theory.26 The theory of asking prices advanced in Khezr and Menezes (2018), for example,

considers the situation wherein sellers learn their reservation value after setting an asking

price and observing buyers’ interest. As in our setting, transactions at the asking price arise

in bilateral meetings; but unlike our model, multilateral meetings can, in some circumstances,

result in transactions below the asking price. Alternative price determination mechanisms

would add considerably to the analytical complexity of the model. Such extensions, however,

would not affect our theoretical results substantively as long as (i) the asking price remains

meaningful (in expectation) for price determination in a bilateral match, and (ii) competition

among bidders in a multilateral match tends to drive up the sales price. The former is to

ensure the directing role of the asking price, which is key for establishing Prediction 1. The

latter is to allow for price escalation in multilateral matches so that sellers can list at $1M in

response to the policy but may still end up selling for more. This is important for Prediction

2.

Second, entry on the supply side of the market is a common approach to endogenizing

housing market tightness in directed search models with auctions (e.g., Albrecht, Gautier,

and Vroman, 2016 and Arefeva, 2016). This assumption equates the seller’s expected surplus

with the listing cost. Keeping instead the measure of sellers constant pre- and post-policy

would further reduce the seller’s expected payoff and hence sales prices. A third alternative

is to allow entry on the demand side, as in Stacey (2016). Buyer entry would be less

straightforward in our context given that the demand side of the market is homogeneous

pre-policy but heterogeneous thereafter. With post-policy entry decisions on the demand

26See Albrecht, Gautier, and Vroman (2016) and Han and Strange (2016) for more sophisticated pricing
protocols that can account for sales prices above, at, and below the asking price.
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side, buyers would self-select into the market in such a way that the effects of the policy would

be mitigated or even non-existent. Suppose for a moment that both types of buyers face

entry decisions subject to an entry fee or search cost. Provided there are sufficiently many

unconstrained potential market participants, unconstrained buyers would enter the market

until they reach indifference about market participation: their expected payoff would equal

the participation cost. Because constrained buyers are outbid by unconstrained buyers,

the expected payoff for a constrained buyer would be strictly less than the cost of market

participation. It follows that constrained buyers would optimally choose not to participate

in this segment of the housing market and consequently the post-policy equilibrium would

be indistinguishable from the pre-policy equilibrium with identically unconstrained buyers.

In contrast, we have shown in the preceding analysis that the policy does affect equilibrium

strategies and outcomes when entry decisions are imposed on the supply side of the market.

Finally, the scope of the model shrinks to a narrow segment of the market around $1M

if the parameter values for v, u and c are close to the seller’s reservation value, which is

normalized to zero. The 20% downpayment constraint also reduces the maximum affordable

price for buyers in segments well above $1M. The model’s implications for these segments are

the same as the $1M segment, albeit with a reinterpretation of parameter c. More specifically,

the perceived reduced ability to pay among prospective buyers generates incentives for the

sellers to adjust their asking prices, and heightened competition among less constrained

buyers can further drive sales prices above asking. In these segments well above $1M,

however, the downpayment requirement is continuous in the sales price, which makes it

empirically challenging to identify the policy effects on buyers’ and sellers’ strategies and price

formation. In contrast, the policy creates a discrete change in the downpayment requirement

at the $1M threshold. The degree of excess bunching at $1M in the data, which we turn to

next, provides evidence on the extent to which buyers and sellers respond to this targeted

financial constraint.
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4 Data and Methodology

4.1 Data

Our dataset includes transactions of residential homes in the Greater Toronto Area from

January 1st, 2010 to December 31st, 2013. For each transaction, we observe asking price,

sales price, days on the market, transaction date, location, as well as detailed housing char-

acteristics. In particular, we define a number of variables to control for house quality. We

create indicator variables for whether the house is detached, semi-detached, condominium or

townhouse. Houses in our data are coded in 16 different styles. We condense this informa-

tion into three housing styles (2-story (≈ 65%), bungalow (≈ 25%), other (≈ 10%)), where

the style ‘other’ includes 1-1/2 story, split-level, backsplit, and multi-level. We observe the

depth and width of the lot in meters, which we convert to the total size of the lot by taking

their product. We create a categorical variable for the number of rooms in a house that has

7 categories, from a minimum of 5 to ≥ 11, and another for the number of bedrooms that

has 5 categories from 1 to ≥ 5. We create an indicator for the geographic district of the

house listing. For our main sample of the city of Toronto, this district variable identifies 43

districts corresponding to the MLS district code.

We observe the final asking price posted in each listing, but not the changes in the asking

price. From a local brokerage office’s confidential database, we learned that about 12% of

overall listings experienced revisions to the asking price. This number reduces to 2% when

it comes to the estimation sample of properties around $1M. For our analysis, we split our

data into two mutually exclusive time periods. We define a post-policy period from July

15th, 2012, to June 15th, 2013. Our pre-policy period is similarly defined as July 15th, 2011,

to June 15th, 2012. That is, we choose one year around the policy implementation date,

but we omit a month covering the pre-implementation announcement of the policy. For the

purposes of assigning a home to the pre- or post-policy period, we use the date the house

was listed.27 We do so because a seller’s listing decision depends on the perceived ability to

27There are no notable differences in our results (available on request) when we instead assign homes to
the pre- or post-policy period based on the date the house sold.
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pay among potential buyers, which in turn depends on whether the policy is implemented.

We assess the sensitivity of our results to different time windows of the pre- and post-policy

periods in a later robustness section.

For the main analysis, we focus on single-family homes in the city of Toronto.28 Ta-

ble 1 contains summary statistics. Panel (a), containing information on all districts, in-

cludes 22,244 observations in the pre-policy period and 19,061 observations in the post-

policy period. The mean sales price in Toronto was $723,396.82 in the pre-policy period

and $760,598.15 in the post-policy period, reflecting continued rapid price growth for single

family houses (all figures in CAD). Our focus is on homes near the $1M threshold, which

corresponds to approximately the 86th percentile of the pre-policy price distribution. There

were 1,448 homes sold within $100,000 of $1M in the pre-policy period and 1,423 in the

post-policy period. Panel (b) of Table 1 shows summary statistics for the central district

only. The central district of Toronto is more expensive than suburban markets in general; in

the post-policy period, a $1M home is at the 56th percentile of the sales price distribution in

the central district. The central district contains nearly 40 percent of the homes sold within

the $0.9M-1.1M price range. In the empirical analysis below, we will examine the policy

impact for the city of Toronto, and for central Toronto separately.

4.2 Empirical Methodology

To measure price responses, we use a bunching approach recently developed in the public

finance literature (e.g., Saez 2010, Chetty et al. 2011, and Kleven and Waseem 2013). Our

theoretical model established that the downpayment discontinuity can create incentives for

bunching at the $1M threshold in terms of listings (Prediction 1), but less so in terms of sales

(Prediction 2). To test these predictions, we use the price segments which are not subject to

the policy’s threshold effects to form a valid counterfactual near the $1M threshold. The two

28The geographic area of our study includes the city of Toronto and the immediate bordering municipalities
of Vaughan, Richmond Hill, and Markham. We do not include the municipalities to the west (Mississauga
and Brampton) or east (Pickering) because there are very few million dollar homes. Our main results
(available on request) are very similar when we include them.
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Table 1
Summary Statistics: City of Toronto

(a) All Districts

Pre-Policy Post-Policy

Asking Sales Asking Sales

All Houses

Mean 722430.15 723396.82 770836.16 760598.15
25th Pct 459900.00 465000.00 499000.00 491000.00
50th Pct 599000.00 605000.00 639000.00 635000.00
75th Pct 799000.00 807500.00 849000.00 845000.00

N 22244.00 22244.00 19061.00 19061.00
Median Duration 10.00 10.00 13.00 13.00
$1M Percentile 0.87 0.86 0.85 0.84

Houses $0.9–1.0M
N 840.00 934.00 888.00 907.00

Median Duration 9.00 8.00 13.00 12.00
Mean Price 964427.90 942427.89 966120.77 946257.88

Houses $1.0–1.1M
N 364.00 514.00 410.00 516.00

Median Duration 10.00 9.00 13.00 12.00
Mean Price 1071802.41 1043508.98 1073840.91 1044025.97

(b) Central District

Pre-Policy Post-Policy

Asking Sales Asking Sales

All Houses

Mean 1082210.56 1087206.62 1172612.53 1153957.65
25th Pct 649000.00 665000.00 699900.00 718000.00
50th Pct 849000.00 875000.00 899900.00 925000.00
75th Pct 1288000.00 1295000.00 1395000.00 1362500.00

N 4943.00 4943.00 4065.00 4065.00
Median Duration 9.00 9.00 11.00 11.00
$1M Percentile 0.64 0.60 0.58 0.56

Houses $0.9–1.0M
N 334.00 363.00 336.00 335.00

Median Duration 8.00 8.00 8.00 8.00
Mean Price 966559.71 943206.85 968328.73 945389.72

Houses $1.0–1.1M
N 163.00 228.00 186.00 226.00

Median Duration 8.00 8.00 10.00 10.00
Mean Price 1073393.17 1044304.37 1074523.94 1045802.38

Notes: This table displays summary statistics for the city of Toronto for single family homes (attached
and detached). The pre-policy period is defined as July 15th, 2011, to June 15th, 2012, and the post-
policy period is defined as July 15th, 2012, to June 15th, 2013. The columns labelled Asking refer to
asking prices and the columns labelled Sales refer to sales prices. Duration refers to the number of days
a home is on the market.
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underlying assumptions are that (1) the policy-induced incentives for bunching occur locally

in segments near the $1M threshold, leaving other parts of the price distributions unaffected

by threshold consequences; and (2) the counterfactual is smooth and can be estimated using

these other parts of the price distributions. In forming the counterfactual, we use a two-step

approach: first constructing counterfactual price distributions that would have prevailed if

there were no changes in the composition of the housing stock using a common reweighting

method; then applying the bunching approach to the difference between each composition-

constant post-policy price distribution and the observed pre-policy distribution.

4.2.1 First step: controlling for housing composition

If houses listed or sold in the million dollar segment in the post-policy year differ in terms

of quality from those in the previous year, then the difference between price distributions in

the two periods could simply reflect the changes in the composition of housing rather than

the effect of the policy. We alleviate this concern by leveraging the richness of our data

to flexibly control for a set of observed house characteristics to back out a counterfactual

distribution of house prices that would have prevailed if the characteristics of houses in the

post-policy period were the same as in the pre-policy period.

Let Yt denote the (asking or sales) price of a house and let Xt denote the characteristics

of a house that affect prices at t = 0 (the pre-policy period), and t = 1 (the post-policy

period). The conditional distribution functions FY0|X0(y|x) and FY1|X1(y|x) describe the

stochastic assignment of prices to houses with characteristics x in each of the periods. Let

FY 〈0|0〉 and FY 〈1|1〉 represent the observed distribution of house prices in each period. We

are interested in FY 〈1|0〉, the counterfactual distribution of house prices that would have

prevailed in the post-period if the characteristics of the houses in the post-period were as in

the pre-period. We can decompose the observed change in the distribution of house prices:

FY 〈1|1〉 − FY 〈0|0〉︸ ︷︷ ︸
∆O=Observed

=
[
FY 〈1|1〉 − FY 〈1|0〉

]︸ ︷︷ ︸
∆X=Composition

+
[
FY 〈1|0〉 − FY 〈0|0〉

]︸ ︷︷ ︸
∆S=Price Structure

. (6)
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Since the counterfactual is not observed, it must be estimated. We use a simple reweight-

ing method proposed by DiNardo, Fortin, and Lemieux (1996) based on the following rela-

tion:

FY 〈1|0〉 =

∫
FY1|X1(y|x) ·Ψ(x) · dFX1(x)

where Ψ(x) = dFX0/dFX1 is a reweighting factor that can be easily estimated using a logit

model (for details, see Fortin, Lemieux, and Firpo 2011). To implement this, we obtain

the weighting function by pooling pre- and post-policy data and estimating a logit model

where the dependent variable is a pre-policy period dummy. The covariate vector contains

indicators for district, month, the number of rooms, the number of bedrooms, whether the

house is detached or semi-detached, the lot size and its square, and the housing style (2-

story, bungalow, other).29 The estimated counterfactual distribution is given by F̂Y 〈1|0〉 =∫
F̂Y1|X1(y|x) · Ψ̂(x) · dF̂X1(x), where F̂ denotes a distribution function estimated using grid

intervals of $5,000. The result is a reweighted version of the observed price distribution in

the post-policy period that can be interpreted as the price distribution that would prevail if

the characteristics of homes were the same as in the pre-policy period.

4.2.2 Second step: bunching estimation

With the estimated ∆̂S(yj) = F̂Y 〈1|0〉(yj)− F̂Y 〈0|0〉(yj) in hand, we are now ready to estimate

the policy effects on asking and sales price using a bunching estimation procedure. This

procedure requires separation of the observed ∆̂S(yj) into two parts: the price segments

near $1M that are subject to the policy’s threshold effects, and the segments that are not.

The affected segments are known as the “excluded region” in the bunching literature. Since

knowledge of this region is not known a priori, it must also be estimated and we develop

a procedure below to do so. Once this region around $1M is determined, we use standard

methods to estimate the counterfactual difference in distributions by fitting a flexible polyno-

29The weighting function is Ψ(x) = p(x)
1−p(x) ·

1−P (t=1)
P (t=0) , where p(x) is the propensity score: i.e., the probability

that t = 0 given x.
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mial to the estimated ∆̂S(yj) outside the excluded region. We use the estimated polynomial

to predict or “fill in” the excluded region which forms our counterfactual. Our estimates

of the policy effects are derived from the difference between the observed ∆̂S(yj) and the

estimated counterfactual.

In particular, consider the equation:

∆̂S(yj) =

p∑
i=0

βi · yij + βA · 1[yj = $1M] + βB · 1[yj = $1M− h]

+
L∑
l=1

γl · 1[yj = $1M− h · (1 + l)] +
R∑
r=1

αr · 1[yj = $1M + h · r] + εj (7)

where p is the order of the polynomial, L is the excluded region to the left of the cut-off, R

is the excluded region to the right of the cut-off, and h is the bin size.30

The total observed jump at the $1M cut-off is

∆̂S($1M)− ∆̂S($1M− h)︸ ︷︷ ︸
Jump at threshold

=

p∑
i=0

β̂i · yi$1M −
p∑
i=0

β̂i · yi$1M−h︸ ︷︷ ︸
Counterfactual (C)

+ β̂A︸︷︷︸
Bunching from above (A)

− β̂B︸︷︷︸
Bunching from below (B)︸ ︷︷ ︸

Total Policy Response

(8)

It is important to note that the interpretation of the total jump at the threshold, as

shown in the left-hand-side of equation (8), is not all causal. Since changes in listings and

sales between the two periods can be more pronounced in some price segments than others,

we should not expect the difference in CDFs to be flat even in the absence of the million

dollar policy. In our case, an upward sloping curve is captured by our polynomial estimates

as a counterfactual. Specifically, the first two terms on the right-hand-side of equation (8)

reflect the counterfactual difference at the $1M threshold.

30Note that there is no residual component in equation (7) since, throughout the excluded region, every
bin has its own dummy and the fit is exact. We observe the population of house sales during this time, thus,
the error term in (7) reflects specification error in our polynomial fit rather than sampling variation. We
discuss the computation of our standard errors of our estimates in more detail below.
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After netting out the counterfactual, we are left with β̂A−β̂B, which is the policy response

we aim to measure. A finding of β̂A > 0 is consistent with bunching from above since it

indicates that sellers that would have otherwise located in bins above $1M instead locate in

the $1M bin. A finding of β̂B < 0, on the other hand, is consistent with bunching from below

since it indicates that sellers that would otherwise locate below the $1M bin now move up

to locate in the $1M bin. Both are responses to the million dollar policy.

In the absence of an extensive margin response, the two sources of response described

above imply the following two constraints. First, the excess mass in the distribution at $1M

resulting from bunching from below should equal the the responses from lower adjacent bins,

implying

RB ≡ βB −
L∑
l=1

γl · 1[yj = $1M − h · (1 + l)] = 0. (9)

Similarly, for those sellers coming from above the threshold,

RA ≡ βA −
R∑
r=1

αr · 1[yj = $1M + h · r] = 0. (10)

In order to implement our estimator, several decisions must be made about unknown

parameters, as is the case for all bunching approaches. In particular, the number of excluded

bins to the left, L, and right, R, are unknown, as is the order of the polynomial, p. In addition,

we choose to limit our estimation to a range of price bins around the $1M threshold. We do

this because the success of our estimation procedure requires estimation of the counterfactual

in the region local to the policy threshold (Kleven 2016). Using data points that are far

away from the excluded region to predict values within the excluded region can be sensitive

to polynomial choice and implicitly place very high weights on observations far from the

threshold (Gelman and Imbens 2014; Lee and Lemieux 2010). Thus, we focus on a more

narrow range, or estimation window, W , of house prices around the policy threshold. Since

we are fitting polynomial functions, this can be thought of as a bandwidth choice for local

polynomial regression with rectangular weights (Imbens and Lemieux 2008). Thus, the
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parameters we require for estimation of the regression coefficients are (L,R,W, p).

We use a data-driven approach to select these parameters. The procedure we implement

is a 5-fold cross-validation procedure, described fully in Appendix C.1. Briefly, we split

our individual-level data into 5 equally sized groups and carry out both step 1 and 2 of

our estimation procedure using 4 of the groups (i.e., holding out the last group), and then

obtain predicted squared residuals from equation (7) for the hold-out group. We repeat

this procedure 5 times, holding out a different group each time, and average the predicted

squared residuals across each repetition. This is the cross-validated Mean Squared Error

(MSE) for a particular choice of (L,R,W, p). We perform a grid search over several values

of each parameter, and choose the specification which minimizes the MSE.31

4.2.3 Caveats about Empirical Methodology

One legitimate concern is that our bunching estimates pick up threshold effects in pricing that

are caused by, for example, marketing convention or psychological bias surrounding $1M, or

other macro forces that affected the housing market at the same time as the implementation

of the million dollar policy. Our estimation methodology addresses this concern in two ways.

First, we examine the post-policy CDF relative to the CDF in the pre-policy period. Time-

invariant threshold price effects unrelated to the policy are therefore differenced out in our

estimation. Second, we allow for round number fixed effects to capture potential rounding

in the price data. Thus, all estimates reported below include a dummy variable for prices in

$25,000 increments, and another for prices in $50,000 increments.

Another potential concern is that the million dollar policy is announced in combination

31In the literature on bunching estimation, the excluded region is sometimes selected by visual inspection
(Saez 2010; Chetty et al. 2011) in combination with an iterative procedure (Kleven and Waseem 2013;
DeFusco and Paciorek 2017) that selects the smallest width consistent with adding-up constraints. Often,
high-order global polynomials are used in estimation and robustness to alternative polynomial orders are
shown. In the closely related regression discontinuity literature, free parameters are sometimes chosen by
cross-validation (Lee and Lemieux 2010). In a recent paper by Diamond and Persson (2016), there are many
different regions and time periods where bunching occurs, and so visual inspection is impractical. They
develop a k-fold cross-validation procedure to choose the width of the manipulation region and polynomial
order. Our approach closely follows theirs. In addition, we consider a series of robustness checks to assess
the sensitivity of our estimates to the choice of parameters L, R, W , and p. We find that our estimates are
quite robust to reasonable deviations from the parameter values selected by our cross-validation procedure.
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with three other mortgage rule changes, which may complicate the challenge for identifi-

cation. However, unlike the million dollar policy, these contemporaneous mortgage rule

changes apply to the entire housing market.32 Their housing market impacts are accounted

for in the counterfactual price distribution that would have prevailed in the absence of the

million dollar policy. By comparing the actual post-policy distribution of house prices to

the counterfactual distribution, the bunching estimation teases out the effect of the million

dollar policy from these confounding factors. To address the possibility that buyer and seller

strategies evolve dynamically in ways that are not reflected in the counterfactuals, we im-

plement several placebo experiments that use alternative cut-offs in Section 5.1.2. We also

present results based on counterfactuals constructed only from data below $1M.

5 Empirical Evidence

The core estimation is presented in Section 5.1 with an aim to test Predictions 1 and 2 by

examining asking and sales prices near the $1M threshold. We then explore Prediction 3 in

Section 5.2.1 and Prediction 4 in Section 5.2.2. Finally, we extend the analysis to study all

segments above $1M in Section 5.3.

5.1 Predictions 1 and 2: Asking Price and Sales Price

5.1.1 Main Results

The main predictions of the model are that the million dollar policy leads to an excess mass

of homes listed at the $1M threshold (Prediction 1), which only partially passes through to

the sales price distribution (Prediction 2).

Our main analysis focuses on single-family-housing markets. Figures 3 and 4 present

graphical results from the first step estimation of asking and sales price distributions based

on equation (6). We first discuss asking prices. Panel A of Figure 3 plots the distribution

functions for the asking price between $600,000 and $1,400,000 in the pre- and post-policy

32See footnote 6 for details.
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years. The post-policy CDF lies everywhere below the pre-policy CDF, indicating that all

housing market segments experienced a boom. Panel B plots the difference between the

two CDFs. If the CDFs were the same pre- and post-policy for a given bin, the difference

would show up as a zero in the figure. The displayed difference in CDFs is always below zero,

indicating that houses in general are becoming more expensive over time. Following equation

(6), we then decompose the difference in CDFs into two components: (i) price difference due

to shifting housing characteristics in each segment (Panel C); and (ii) price difference due

to changes in sellers’ listing strategies (Panel D). The latter is the market response that we

aim to measure at the $1M threshold. As shown in Panel C, the price change caused by

shifting housing characteristics is small in magnitude and relatively flat. In contrast, Panel D

shows that the price difference caused by sellers’ updated listing strategies generally changes

smoothly with price, with a relatively large jump at $1M. Given the minimal composition

effect, nearly all of the difference in the observed distribution of asking prices is driven by

sellers’ listing behavior.

Turning to the sales prices, the top panels of Figure 4 plot the distribution of sales price in

the pre- and post-policy years and their differences. The bottom panels of Figure 4 show that

after accounting for the composition effect, a jump in the sales price at the $1M threshold is

hardly apparent, supporting the notion that buyers’ non-trivial search and bidding activities

disentangle sales prices from asking prices, potentially mitigating the overall impact of the

policy.

The descriptive findings presented in Figures 3 and 4 are consistent with the model.

However, this evidence alone does not distinguish the policy effects from the impact of other

contemporaneous macro forces. To isolate the million dollar policy’s effects on the price

distributions, we now turn to the second step estimation: namely, bunching estimation. We

choose to plot the bunching estimates in both the CDFs and the PDFs. While the latter is

more standard in the bunching literature, the former allows us to visualize the decomposition

of the estimated jump based on equation (8) in a more transparent way.

Figure 5a presents a graphical test of Prediction 1 based on the estimation of equation
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Figure 3
Observed Distribution and Decomposition of Asking Prices

Notes: The figure uses data on asking prices for the city of Toronto in the year before (pre-period) and after
(post-period) the implementation of the million dollar policy. Panel A plots the empirical CDF of asking
prices for each year. Panels B through D decomposes the difference in the CDFs according to equation (6).
Panel B plots the observed difference in the CDFs, ∆O. Panel C plots the difference in the CDFs due to
composition, ∆X . Panel D plots the difference due to the change in the price structure, ∆S .
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Figure 4
Observed Distribution and Decomposition of Sales Prices

Notes: The figure uses data on sales prices for the city of Toronto in the year before (pre-period) and after
(post-period) the implementation of the million dollar policy. Panel A plots the empirical CDF of asking
prices for each year. Panels B through D decomposes the difference in the CDFs according to equation (6).
Panel B plots the observed difference in the CDFs, ∆O. Panel C plots the difference in the CDF s due to
composition, ∆X . Panel D plots the difference due to the change in the price structure, ∆S .

(7). In particular, we plot changes in the CDFs of the asking price, ∆̂S(yj) = F̂Y 〈1|0〉(yj) −

F̂Y 〈0|0〉(yj), holding housing characteristics constant. The solid line plots the quality-adjusted

observed changes, with each dot representing the difference in the CDFs before and after

the policy for each $5,000 price bin indicated on the horizontal axis. The dashed line plots

the counterfactual changes in the absence of the policy, while the vertical dashed lines mark

the lower and upper limits of the bunching region ($975,000 and $1,025,000). Note that the

width of the estimation widow ($100,000 dollars on each side of the threshold), the order

of the polynomial (cubic), and the width of the excluded region were chosen based on the

cross-validation procedure outlined in Section 4.2.2.

The empirical distribution of asking prices exhibits a sharp discontinuity at the $1M
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threshold. After the policy, a total of 0.45 percent of listings were added to the $1M bin.

Following equation (8), Figure 5a decomposes this total jump into three distinct components:

0.06 percent of listings reflect the counterfactual change in the absence of the million dollar

policy (marked by C), 0.18 percent of listings bunched from below (marked by B) and 0.20

percent of listings bunched from above (marked by A). Thus, 87% (i.e., (A+B)/(A+B+C))

of the excess bunching in the asking price at the $1M threshold is attributed to the policy.

Figure 5b further presents a graphical test of Prediction 1 based on the difference in

densities. The spike in homes listed at the $1M is accompanied by dips in homes listed to

the right and left of $1M. The spike reflects the excess mass of homes listed between $995,000

and $1M after the implementation of the policy. The dips reflect missing homes that would

have been listed at prices further from the $1M in the absence of the policy.
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(b) ∆̂S′(yj) and counterfactual estimate

Figure 5
Visual representation of column (1) in Table 2

Notes: Panel (a) of the figure shows a visual representation of the bunching specification in column (1) of
Table 2 which uses data on asking prices for the city of Toronto. The dots indicate the before-after policy
differences in the CDFs, ∆̂S(yj). Vertical dashed lines in the figure indicate the excluded region. The solid
line is the fitted polynomial from equation (7) outside the excluded region and the fitted dummies within it.
The dashed line, formed from predicted values of the polynomial within the excluded region, indicates the
counterfactual estimate of the CDF difference that would have prevailed in the absence of the policy. The
figure labels correspond to those in equation (8) that decompose the vertical jump at the policy threshold,
indicating the magnitude of bunching from above (A) and below (B), and the counterfactual estimate (C).
Panel (b) represents the same specification in terms of differences in PDFs.

Column (1) of Table 2 reports our baseline bunching estimates underlying the above
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graphical presentation. The specification used is chosen by the cross-validation procedure

outlined above. Standard errors are calculated via bootstrap.33 Overall, we find that ap-

proximately 86 homes that would have otherwise been listed away from $1M were shifted to

the $1M bin. While seemingly small, 86 additional homes represent a 38.3 percent increase

relative to the number of homes that would have been listed in the million dollar bin in the

absence of the policy. Among these additional listings, about half are shifted from below

$995,000; the remaining half come from above $1M. Both estimates are significant at the

five percent level. When viewed through the lens of our search model, price adjustments

from both sides of $1M are quite sensible. On the one hand, the policy induces some sellers

who would have otherwise listed homes below $1M to increase their asking prices towards

the $1M mark. By doing so, these sellers demand a higher price in a bilateral situation to

offset any price dampening effect of the policy in multilateral situations. On the other hand,

the policy induces other sellers who would have otherwise listed homes above $1M to lower

their asking price to just below the cut-off, attracting both constrained and unconstrained

buyers to compete for their homes.

As noted earlier, we do not observe sellers’ revisions to asking prices in our main data.

With a one-time access to a local brokerage office’s confidential database, we find that about

44 houses in the estimation sample (2% of all houses that sold within $100,000 of $1M)

were originally listed before the policy, pulled off the market, re-listed after the policy and

then sold. Restricting attention to these 44 houses, Figure 6 shows that 18 (41%) of them

adjusted their asking price to [$975,000, $1,000,000]. These adjustments come from both

sides, complementing our bunching estimation results. Among the 22 re-listed houses that

were originally asking between $1M and $1.1M before the policy, 14 (64%) of them reduced

their price to just under $1M after the policy. These asking price revisions are consistent

the intuition that some sellers lower their asking price to invite competition from both

constrained and unconstrained buyers.

33We calculate standard errors for all estimated parameters by bootstrapping both steps 1 and 2 of the
estimation procedure. We draw 399 random samples with replacement from the household-level data, and
calculate the standard deviation of our estimates for each of these samples.
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Table 2
Regression Bunching Estimates: City of Toronto and Central District

City of Toronto Central District

(1) (2) (3) (4)
Asking Sales Asking Sales

Jump at cut-off 0.0045∗ 0.00094∗ 0.0094∗ 0.0032∗

(0.0010) (0.00042) (0.0032) (0.0014)

Total Response 0.0039∗ 0.00050 0.0068∗ 0.0028
(0.0010) (0.00053) (0.0031) (0.0017)

From Below -0.0018∗ 0.00017 -0.0049∗ -0.0013
(0.00072) (0.00060) (0.0022) (0.0018)

From Above 0.0020∗ 0.00067 0.0020 0.0014
(0.00089) (0.00079) (0.0025) (0.0022)

Observations 41305 41305 9008 9008
Excluded Bins:

L 4 1 3 1
R 5 2 4 2

Tests of Fit:

B −
∑L

l β
l
B -.0013 .00017 -.00045 -.0013

(.0013) (.0006) (.0022) (.0018)

A−
∑R

r β
r
A .0025 -.00036 .0048 -.0012

(.0016) (.00057) (.0041) (.0018)
Joint p-val. 0.20 0.82 0.52 0.45

Impact:

∆ Houses at cutoff 85.9 11.1 33.8 13.7

Specifications:

Poly. Order 3 3 2 2
Window 20 20 25 20
Other CV Opt. CV Opt. CV Opt. CV Opt.

Notes: This table displays the bunching estimates of the million dollar pol-
icy for the city of Toronto and the central district. The dependent variable
is ∆̂S(yj) constructed using asking prices (columns 1 and 3) or sales prices
(columns 2 and 4). The rows of the table correspond to the components
of (8). The first row shows the total jump at the million dollar threshold,

the second row shows the total response due to the policy (β̂A − β̂B), and

the last two rows show the response from above (β̂A) and below (β̂B) the
threshold, respectively. Standard errors, in parentheses, are constructed via
bootstrap discussed in the main text. (∗) denotes significance at the 5%
level.
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Figure 6
Observed Changes in Asking Price Among Re-Listed Properties

Notes: The figure uses data for a subset of houses that were listed prior to the implementation of the
million dollar policy that were withdrawn and listed again after the implementation of the policy. This
subset includes only houses that had asking prices in the $900K to $1M range within 180 days of June
9th, 2012. The left vertical bar shows the house’s pre-policy asking price and the right vertical bar shows
the house’s post-policy asking price. Lines in green show pricing behaviour consistent with our bunching
analysis; that is, these houses re-listed just below $1M (specifically, the $975K to $1M segment, indicated
by dashed horizontal lines).
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(b) ∆̂S′(yj) and counterfactual estimate

Figure 7
Visual representation of column (2) of Table 2

Notes: Panel (a) of the figure shows a visual representation of the bunching specification in column (2) of
Table 2 which uses data on sales prices for the city of Toronto. The dots indicate the before-after policy
differences in the CDFs, ∆̂S(yj). Vertical dashed lines in the figure indicate the excluded region. The solid
line is the fitted polynomial from equation (7) outside the excluded region and the fitted dummies within it.
The dashed line, formed from predicted values of the polynomial within the excluded region, indicates the
counterfactual estimate of the CDF difference that would have prevailed in the absence of the policy. Panel
(b) represents the same specification in terms of differences in PDFs.

Turning to Prediction 2, we report the bunching estimates for the sales price in column

(2) of Table 2, with a visualization of the estimates shown in Figure 7. Despite sharp excess

bunching of asking prices, we do not find evidence of excess bunching of sales prices at

the $1M price bin; the estimated total response attributable to the million dollar policy

is small and statistically insignificant. This evidence is consistent with Prediction 2, which

characterized how the price dampening effect of the policy can be undermined by the strategic

search and bidding behavior of market participants in a setting with search frictions and

auctions. To test this interpretation, we estimate the policy effect on bidding intensity in

Section 5.2.1.

Million dollar homes are concentrated in central Toronto. In columns (3) and (4) of Table

2, we restrict the sample to the central district and repeat the same estimation for asking and

sales prices as in columns (1) and (2). Despite the much reduced sample size, the resulting

estimates are qualitatively consistent with what we find above for the city of Toronto.
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Condominiums and townhouses make up an important sector of the Toronto housing

market with 21,768 transactions in the pre-policy period.34 For this sector, Table 3 shows

that the million dollar policy adds 19 listings at $1M and 12 sales at $1M, aligning again with

Predictions 1 and 2. Quantitatively, the degree of excess bunching is smaller, because there

are much fewer million dollar condominiums than houses. While a $1M home corresponds to

the 86th percentile in the single-family-housing market, it corresponds to the 99th percentile

in the condominium and townhouse market. Given this, we focus the analysis hereinafter on

single-family-homes.

5.1.2 Robustness Checks

In Appendix E.1, we estimate an extensive set of specifications to assess the robustness of our

main results. We briefly review these results here and provide a more extensive discussion

in the appendix. Our first robustness exercise deals with the concern that the bunching

estimates could be altered by plausible policy responses above the $1M threshold. Suppose

the introduction of the policy hindered potential listings or transactions above $1M. In that

case, our counterfactuals estimated by excluding an area around the $1M threshold would

not accurately reflect what would have occurred in the absence of the policy. Note that this

is a common issue in the bunching literature (Kopczuk and Munroe 2015; Best et al. 2018;

Best and Kleven 2018). As suggested by Kleven (2016), we construct the counterfactual

using only data below $1M under the assumption that the distribution below the threshold

is unaffected by the policy, and the results are similar to those presented above.

Our analysis above hinges on the assumption that homes further below $1M are unaffected

by the policy. A second concern, then, is that there are unintended policy consequences in

market segments below the threshold. This could occur, for example, if a seller of a below-

$1M home intends to trade-up to an above-$1M home. The seller may be constrained in that

the proceeds from the sale of their current home must not compromise their ability to make a

20% downpayment on their next home. To that end, they may alter their listing and selling

34See Table D1 in the Appendix.
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Table 3
Assessing Robustness to Housing Types

Condos/Townhouses All Homes

(1) (2) (3) (4)
Asking Sales Asking Sales

Jump at cut-off 0.00077 0.00052∗ 0.0030∗ 0.00074∗

(0.00040) (0.00018) (0.00059) (0.00025)

Total Response 0.00086∗ 0.00056∗ 0.0025∗ 0.00049
(0.00040) (0.00020) (0.00059) (0.00030)

From Below -0.00012 -0.000076 -0.00097∗ 0.000076
(0.00027) (0.00022) (0.00040) (0.00034)

From Above 0.00074∗ 0.00049 0.0016∗ 0.00057
(0.00031) (0.00025) (0.00048) (0.00042)

Observations 40025 40025 83058 83058
Excluded Bins:

L 4 1 4 1
R 5 3 5 2

Tests of Fit:

B −
∑L

l β
l
B .00016 -.000076 -.00048 .000076

(.00054) (.00022) (.00073) (.00034)

A−
∑R

r β
r
A .001 .00012 .0022∗ -.00021

(.00054) (.00029) (.00084) (.00032)
Joint p-val. 0.18 0.86 0.036 0.80

Impact:

∆ Houses at cutoff 18.7 12.2 114.4 22.1

Specifications:

Poly. Order 3 3 3 3
Window 20 20 20 20

Notes: This table displays the bunching estimates of the million dollar pol-
icy for condos/townhouses and all housing types in Toronto. The dependent
variable is ∆̂S(yj) constructed using using either asking prices (columns 1
and 3) or sales prices (columns 2 and 4). The rows of the table correspond
to the components of (8). The first row shows the total jump at the mil-
lion dollar threshold, the second row shows the total response due to the
policy (β̂A− β̂B), and the last two rows show the response from above (β̂A)

and below (β̂B) the threshold, respectively. Standard errors, in parenthe-
ses, are constructed via bootstrap discussed in the main text. (∗) denotes
significance at the 5% level.
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strategies, which could affect prices within the estimation window but below the excluded

region. Given the rate of house price appreciation, however, this trading-up constraint is

unlikely to bind except possibly for sellers that bought their home very recently.35 In Table

E4 of Appendix E.2, we report specifications that exclude sellers that bought their current

home within the previous three, four, or five years. The resulting bunching estimates are

very similar to those reported in Table 2, alleviating concerns about constrained buyer-sellers

in the Toronto market.

To the extent that the policy might have other spillover effects, we rely on our data-driven

method for model selection to appropriately determine, among other things, the estimation

window and the size of the exclusion region. In Appendix E.1 we perform an extensive set

of robustness checks to ensure that our estimates are not overly sensitive to the parameters

chosen by our data-driven procedure. In particular, in Tables E1 and E2 we present results

based on alternative criteria for parameter selection, with the estimation window widened

by $25,000, with a fourth-order polynomial, and with the constraints in equations (9) and

(10) imposed. Reassuringly, the bunching estimates are extremely robust, suggesting that

our results are not driven by the selection of the size of the estimation window, order of the

polynomial, or the width of the excluded region. Appendix E.1 also contains a graphical

depiction of a larger set of robustness checks, providing further support in these regards.

Next, we perform two different types of placebo tests as additional checks of our identi-

fication strategy. First, we designate two years prior to the implementation of the million

dollar policy as placebo years. There were no changes to policies specifically affecting houses

around the $1M threshold during this time, and so we would not expect to find patterns of

excess bunching.36 Second, we designate alternative placebo thresholds at prices well below

35To see this, consider the possibility that sellers below $1M put down the minimum 5% with a 25-year
amortizing loan when purchasing their home initially and are contemplating trading up to an above-$1M
Toronto home. With a mortgage rate of 4% and annual house price appreciation of 5% , the seller of a $900K
home in 2012 would have accumulated over $316K in home equity, which is enough for a 20% dowpayment
on a $1.5M home purchase, provided they owned their home for at least 5 years.

36In a similar spirit, in Tables E7 and E8, we compare the last six months of 2011 with the first six
months of 2012 in column (6) and the last six months of 2012 and the first six months of 2013 in column
(7). The former are two periods before the million dollar policy, the latter are two periods after the policy.
As expected, we find no evidence of excess bunching in asking or sales prices around the $1M threshold.
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or above the $1M threshold, and again estimate our baseline specification at each of these

points. The idea is straightforward: since the million dollar policy generates a notch in the

downpayment required of buyers at precisely $1M, house prices in market segments well

below or well above the $1M cut-off should not be affected by the policy in a discontinuous

manner. Table E3 contains 50 placebo estimates: 24 during the years overlapping the im-

plementation of the policy for alternative price thresholds (the estimates excluding the $1M

threshold), and 26 during the pre-policy years. Of these, only 4 are statistically significant

and only 1 is economically large. Taken together, these results support the notion that the

bunching results presented in Section 5.1 provide an accurate measure of the threshold effects

of the million dollar policy on house prices.

Finally, we assess the robustness of our main results to alternative choices of the pre-

and post-policy periods. Our baseline specification groups pre- and post-policy periods by

listing date and omits the few weeks following the announcement of the policy but before its

implementation. In Appendix E.4, we show that our main results are not sensitive to these

choices. We also show that our results are qualitatively robust to narrowing the pre- and

post-periods from one year to six or three months.

5.2 Predictions 3 and 4: Bidding Wars

5.2.1 Sales-above-Asking and Time-on-the-Market

Turning to the policy effects on market liquidity, Prediction 3 states that the million dollar

policy reduces expected time-on-the-market and increases the incidence of sales-above-asking

for homes listed just under $1M. The policy thus triggers a discontinuous increase in the

expected time-on-the-market and a discontinuous decrease in the probability of selling-above-

asking right at asking price $1M. We bring this prediction to the data by employing a

regression discontinuity design. The variables of interest are (1) the probability that a house

sold above the asking price conditional on being listed at p ≥ yAj ; and (2) the probability

that a house stayed on the market for more than two weeks conditional on being listed at

p ≥ yAj , where two weeks is roughly the median time-on-the-market in the sample. We
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construct these two variables in three steps.

First, we estimate the complementary CDFs, ŜY 〈0|0〉(y
A
j ) = 1−F̂Y 〈0|0〉(yAj ) and ŜY 〈1|1〉(y

A
j ) =

1 − F̂Y 〈1|1〉(y
A
j ), which represent the probability of a house being listed for at least yAj .

Holding the distribution of housing characteristics the same as the pre-policy period us-

ing the reweighting method described in Section 4.2.1, we then estimate the counterfactual

probability ŜY 〈1|0〉(y
A
j ) = 1 − F̂Y 〈1|0〉(yAj ). Second, we estimate the rescaled complementary

CDFs, RSY 〈0|0〉(y
A
j , y

S ≥ yA) and RSY 〈1|1〉(y
A
j , y

S ≥ yA), which give the joint probability of

a house being listed for at least yAj and selling above the asking price. Similarly, we esti-

mate R̂SY 〈1|0〉(y
A
j , y

S ≥ yA), the counterfactual rescaled complementary CDF, holding the

distribution of housing characteristics the same as the pre-policy period. Finally, using the

estimated probabilities above and Bayes’ rule, we derive the conditional probability that a

house is sold above asking conditional on being listed for at least yAj in the pre-policy period,

ŜY 〈0|0〉(y
S ≥ yA|yAj ) =

R̂SY 〈0|0〉(y
A
j , y

S ≥ yA)

ŜY 〈0|0〉(yj)
,

and the corresponding counterfactual post-policy conditional probabilities,

ŜY 〈1|0〉(y
S ≥ yA|yAj ) =

R̂SY 〈1|0〉(y
A
j , y

S ≥ yA)

ŜY 〈1|0〉(yj)
.

Using this three-step procedure, we impute the two variables of interest: (1) the change

in the probability of being sold above asking, ŜY 〈1|0〉(y
S ≥ yA|yAj ) − ŜY 〈0|0〉(y

S ≥ yA|yAj );

and (2) the change in the probability of being on-the-market for more than two weeks,

ŜY 〈1|0〉(D ≥ 14|yAj ) − ŜY 〈0|0〉(D ≥ 14|yAj ). Both are constructed relative to the pre-policy

period, conditional on being listed for at least yAj and holding the distribution of housing

characteristics constant.

We plot each of the two constructed variables above as a function of the asking price,

along with third order polynomials which are fit separately to each side of $1M. In Figure

8a, changes in the probability of being sold above asking exhibit a discrete downward jump

at $1M, with an upward sloping curve to the left of $1M. In 8b, changes in the probability of
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staying on the market for more than two weeks exhibit a discrete upward jump at $1M, with

a downward sloping curve to the left of $1M. The evident discontinuities at $1M for time-

on-the-market and sales-above-asking correspond exactly with Prediction 3, suggesting that

the policy’s minimal effect on sales prices can be at least partially attributed to heightened

competition for homes listed just under $1M. Moreover, Figures 8c and 8d display changes

in these two variables during two years prior to the policy. It is clear that changes in sales-

above-asking can be represented by a smooth function of the asking price before the policy.

Changes in time-on-the-market still exhibit a discrete jump at $1M even during the pre-

policy periods, but the jump is statistically insignificant and much smaller in magnitude

than during the policy periods. Together, these patterns are congruent with the finding that

the policy caused a discrete jump in bidding intensity at the $1M and a heated market right

below the $1M threshold.

5.2.2 Reallocation of Million Dollar Homes

Prediction 4 implies that the policy encourages an allocation of million dollar homes that

favours less constrained over more constrained homebuyers. With a one-time-access to re-

stricted proprietary mortgage data, we impute the fraction of constrained buyers (defined as

having an LTV ratio above 80%) around the million dollar segment in our sample market

during one year before and one year after the policy. For the segment slightly above $1M,

the fraction of constrained buyers is reduced to zero, which is as intended. For the segment

slightly below $1M, the fraction of buyers making downpayments of more than 20% remains

high, even after the implementation of the policy. This is consistent with the model’s im-

plication that less constrained buyers have an incentive to participate in the segment below

$1M because they can outbid constrained buyers in multiple offer situations. Thus, achiev-

ing the desired mortgage market outcome above $1M did not necessarily compromise the

segment just below $1M. Lacking suitable micro-level mortgage data, we leave a formal test

of these credit market implications for future research.
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(d) Duration on Market - Pre-Policy Period

Figure 8
Policy Effects on Sales above Asking and Time on the Market

Notes: Panel (a) of the figure plots the change in the probability that a home is sold above asking, conditional
on the asking price during the policy period. Panel (b) plots the change in the probability that a home is on
the market for a duration longer than two weeks, conditional on the asking price during the policy period.
Panels (c) and (d) repeat the analysis in panels (a) and (b), respectively, for the pre-policy period. Each
dot represents the observed change in probability, while the solid line plots the predicted values from a
second-order polynomial fit separately to either side of $1M.

5.3 Policy Responses Above $1M

The million dollar policy may not only affect homes around the $1M threshold but homes

above $1M as well. Lacking a discrete change in the downpayment requirement in the

segments far above $1M, the bunching approach cannot be used to estimate policy conse-

quences there. In this section, we design an alternative approach to examine the possible
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price responses above the $1M threshold. An extensive margin response would occur if some

transactions above the $1M threshold did not transpire due to the additional financial con-

straint. Fewer transactions means less probability mass in segments above $1M, and hence

relatively more probability mass in segments below $1M. Consequently, the CDF for post-

policy prices would diverge above the counterfactual CDF, with the largest discrepancies

at and around the $1M price threshold. An intensive margin response, on the other hand,

would occur if some prices above $1M are lower than they would have been otherwise, in

which case probability mass shifts to lower prices closer to $1M. The post-policy CDF would

again diverge above the counterfactual CDF, and the discrepancies would appear above the

$1M threshold.

We apply the distribution decomposition method proposed by Fortin, Lemieux, and Firpo

(2011) to analyze the evolution of the price distributions over the sample period. Following

the approach of Chernozhukov, Fernández-Val, and Melly (2013), we decompose the total

change in the price distribution between the pre- and post-policy periods into three parts:

(1) the effect of changes in house characteristics, (2) the effect of the changes in market

conditions, and (3) any residual differences in price distributions. We consider part (3) to

encompass all potential policy effects. Each of these can be measured as differences between

appropriately chosen counterfactual distributions. We further provide confidence intervals

for each component, thereby quantifying their economic and statistical significance. Consider

the following decomposition:

[
F1 − F0

]︸ ︷︷ ︸
observed difference

=
[
F1 − Fc

]︸ ︷︷ ︸
house characteristics

+
[
Fc − F̂c

]︸ ︷︷ ︸
price counterfactual

+
[
F̂c − F0

]︸ ︷︷ ︸
market conditions

, (11)

where F1 is the observed post-policy distribution, F0 is the observed pre-policy distribution,

Fc is the estimated composition-adjusted post-policy distribution (i.e., holding constant the

pre-policy distribution of housing characteristics using the reweighting method discussed

in Section 4.2.1), and F̂c is a counterfactual composition-adjusted post-policy distribution.

For the counterfactual distribution, F̂c, we use the pre-policy distribution, but shifted and
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rescaled to reflect market forces. In particular, we assume that the overall market trends

between the the pre- and post-policy periods are captured by shifting and rescaling the pre-

policy distribution along the horizontal axis.37 Importantly, we use only the shape of the

distribution below a cut-off to estimate the counterfactual shifting and rescaling so as to

minimize the possibility of interpreting any policy effects as broad market trends. These

shape-preserving differences in distributions are labelled “market conditions”, whereas the

differences due to changes in house characteristics are labelled “house characteristics”. We

are interested in differences that are not attributed to either the changing composition of

homes sold or evolving market conditions, which we label “price counterfactual”.38

More formally, we form the counterfactual post-policy distribution F̂c using the pre-policy

distribution F0, but shifted and rescaled:

y = F̂c(p) ≡ F0

(
p− β0

β1

)
, (12)

where β0 is the shift (location) parameter and β1 is the scale parameter. We want F̂c to

closely approximate the composition-constant post-policy distribution, Fc, for all prices less

than some cut-off τ < $1M. Inverting the distribution functions to obtain quantile functions

yields the following relationship:

p = F̂−1
c (y) = β0 + β1F

−1
0 (y), (13)

To achieve the desired approximation, we estimate β0 and β1 by regressing the quantiles of

Fc below τ = $900K on the corresponding quantiles of F0 as well as a constant.39 Denoting

37We shift and rescale along the horizontal rather than vertical axis to preserve the boundedness properties
of a cumulative distribution function. This is equivalent to selecting a distribution F̂c from the same location-
scale family as the pre-policy distribution, F0.

38Note that compared to the decomposition detailed previously in Section 4.2.1, we have further decom-
posed the “price structure” into “market conditions” and a residual “price couterfactual”.

39The R-squared value for this regression is 0.9996, meaning the linear transformation of F−10 closely
approximates F−1c for prices up to $900K.
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these estimates β̂0 and β̂1, the estimated counterfactual quantile function is

p = F̂−1
c (y) = β̂0 + β̂1F

−1
0 (y), (14)

which can then be inverted to recover the estimated counterfactual post-policy distribution

function, F̂c. Finally, we compare F̂c to F1 at prices above τ = $900K to make inferences

about policy effects above the threshold.

Our proposed method for disentangling market trends from other potential policy effects

therefore relies on two identification assumptions: (1) that market trends in the absence of the

policy can be suitably represented by an intercept and slope shift in the pre-policy quantile

function (equivalently, a shifting and rescaling of the pre-policy distribution function); and

(2) that these parameters can be estimated using only price segments below τ . To assess

these assumptions, we apply the same procedure using only pre-policy sample periods. We

also apply the same procedure to simulated data that feature no policy response, an extensive

margin response, and an intensive margin response to further justify assumptions (1) and

(2), and to show that our method can readily detect policy effects above $1M. To further

address assumption (2), we assess robustness to a lower τ cut-off: namely, $800K.

We first summarize the results of the simulation exercises presented in Appendix F.3 of

the supplemental material. In the absence of a policy response, a shape-preserving change

in the distribution is well-summarized by a linear transformation applied to the pre-policy

quantile function. Moreover, the intercept and slope coefficients are estimated reasonably

well using only prices below a cut-off of $900K.40 Reassuringly given the absence of a sim-

ulated policy response, the price counterfactual is everywhere close to zero. We further

simulate an extensive margin response to the policy by dropping 20% of prices above $1M

in the post-policy sample, and an intensive margin response by lowering prices in excess of

$1M by 30% of this excess amount. Using the proposed distribution decomposition method,

both extensive and intensive margin responses are immediately apparent.

We present our empirical results in Figure 9, which plots the observed CDFs and their

40This still holds true if we lower the cut-off, τ , from $900K to $800K.
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differences, along with the decomposition. To aid with data visualization, a smoothing

algorithm was applied to each curve following Chernozhukov, Fernández-Val, and Melly

(2013), and dots corresponding to ventiles of the post-policy price distribution illustrate how

many transactions are represented by different segments of each curve. Panel (a) uses the

main sample for the city of Toronto, whereas panel (b) focuses on the central district of

Toronto. Two patterns emerge in both panels. First, the post-policy price distributions

lie everywhere below the pre-policy distributions, reflecting an upward price trend in the

Toronto market over time. Second, differences attributed to market conditions, as captured

by the intercept and slope coefficients estimated using price data below $900K and applied

to the observed pre-policy distribution, account for nearly all of the observed differences

between the pre- and post-policy CDFs in Figure 9. The price counterfactual differences left

unexplained by market conditions and house characteristics are thus nearly indistinguishable

from zero.41 In particular, there appears to be no visual evidence of positive discrepancies

in price segments around or above $1M. Had the policy either inhibited sales or dampened

prices in segments above $1M, we would expect the price counterfactual to diverge above

zero, as discussed above. Given the standard errors, we are unable to reject the hypothesis

that the price counterfactual differences in these price segments are zero. This is true for

both the city of Toronto (panel (a)), and the central district (panel (b)). This analysis

suggests that the policy effects in the above $1M segments are minimal.42 This may not

be surprising given that $1M was at the 86th percentile of the house price distribution in

2012. Homes priced above $1M thus represent very high-end segments. If buyers in these

segments tend to be wealthy, many of them may not be financially constrained by a 20%

downpayment requirement, in which case high prices could prevail from bidding competition

among these less constrained buyers.

41The standard errors used to construct the confidence bands are obtained by bootstrapping our procedure
399 times.

42In Appendix F we perform several robustness exercises in generating our price counterfactual differences.
In particular, we examine the sensitivity to a lower cut-off of τ = $800 and narrower estimation windows.
The latter exercise should, in principle, minimize potentially confounding market trends. Our results are
similar to those reported here. We also present the results as a decomposition of the differences in PDFs
rather than CDFs.
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Figure 9
Examining Policy Responses Above $1M (CDFs)

Notes: Panel (a) of the figure plots the pre- and post-policy sales price distributions, their differences, and
the decomposition based on house characteristics, market conditions, and any residual price counterfactual
differences for the city of Toronto. Panel (b) represents the same procedure for the central district. The
cut-off for estimating market trends is set to $900K. The shaded area represents a 95% confidence interval,
obtained via bootstrap.

6 Conclusion

In this paper we assess the impact of a financial constraint on price formation in the tar-

geted segment of a frictional housing market. Our empirical methodology exploits a natural

experiment arising from a mortgage insurance policy change that effectively imposes a 20

percent minimum downpayment requirement on homebuyers paying $1M or more. The in-

terpretation of our results is motivated by a search-theoretic model of sellers competing for

financially constrained buyers in the $1M segment of the housing market. We model the mil-
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lion dollar policy as a targeted financial constraint affecting a subset of prospective buyers.

We show that sellers respond strategically by adjusting their asking prices to $1M, which

attracts both constrained and unconstrained buyers. Because of the interactions of search,

bidding and listing strategies of buyers and sellers, asking price effects translate into milder

sales price effects.

We exploit the policy’s $1M threshold to isolate the effects of the policy on prices

and other housing market outcomes. Specifically, we implement an estimation procedure

that combines a decomposition method with bunching estimation. Using housing market

transaction-level data from the city of Toronto, we find that the million dollar policy results

in excess bunching at $1M for asking prices but not for sales prices. These results, together

with evidence that homes listed just below the $1M threshold sell faster with a higher inci-

dence selling-above-asking, match the intuition derived from the theory. For segments well

above $1M, we apply a distribution decomposition approach to uncover potential policy ef-

fects. We do not find evidence that the million dollar policy impacted home sales above the

$1M threshold.

Overall, we find that the million dollar policy did not achieve the specific goal of cooling

the housing boom, but instead heated a narrow segment of the market right below $1M.

These findings are difficult to reconcile in a frictionless market, but are fully consistent with

an equilibrium model of financial constraints with search frictions and auction mechanisms.

Our analysis thus points to the importance of designing macroprudential policies that con-

sider the underlying market microstructure and recognize the strategic responses of market

participants.
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Supplemental Appendices: The Effects of a
Targeted Financial Constraint on the Housing Market

A Delinquency and Credit Score Metrics

Figure A1
Delinquency Rates and Origination Credit Scores
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B Theory: Details and Derivations

B.1 Expected Payoffs

Expected payoffs are markedly different depending on whether the asking price, p, is above
or below buyers’ ability to pay. Consider each scenario separately.

Case I: p ≤ c. Expected payoffs in this case, denoted V i
I (p, λ, θ) for i ∈ {s, u, c}, are the

ones derived in Section 3.2.2.
Case II: c < p ≤ u. The seller’s expected net payoff is

V s
II(p, λ, θ) = −x+

∞∑
k=1

π(k)φk(1)p+
∞∑
k=2

π(k)
k∑
j=2

φk(j)u.

The closed-form expression is

V s
II(p, λ, θ) = −x+ (1− λ)θe−(1−λ)θp+

[
1− e−(1−λ)θ − (1− λ)θe−(1−λ)θ

]
u. (B.1)

The second term reflects the surplus from a transaction if she meets exactly one uncon-
strained buyer; the third term is the surplus when matched with two or more unconstrained
buyers.

The unconstrained buyer’s expected payoff is

V u
II(p, λ, θ) = π(0)(v − p) +

∞∑
k=1

π(k)

[
φk(0)(v − p) +

k∑
j=1

φk(j)
v − u
j + 1

]
.

The closed-form expression is

V u
II(p, λ, θ) =

1− e−(1−λ)θ

(1− λ)θ
(v − u) + e−(1−λ)θ(u− p). (B.2)

The first term is the expected surplus when competing for the house with other unconstrained
bidders; the second term reflects additional surplus arising from the possibility of being the
exclusive unconstrained buyer.

Since constrained buyers are excluded from the auction, their payoff is zero:

V c
II(p, λ, θ) = 0. (B.3)

Case III: p > u. In this case, all buyers are excluded from the auction. Buyers’ payoffs
are zero, and the seller’s net payoff is simply the value of maintaining ownership of the home
(normalized to zero) less the listing cost, x:

V s
III(p, λ, θ) = −x, V u

III(p, λ, θ) = 0 and V c
III(p, λ, θ) = 0. (B.4)

Using the expected payoffs in each of the different cases, define the following value func-
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tions: for i ∈ {s, u, c},

V i(p, λ, θ) =


V i
III(p, λ, θ) if p > u,
V i
II(p, λ, θ) if c < p ≤ u,
V i
I (p, λ, θ) if p ≤ c.

(B.5)

B.2 Algorithm for Constructing Pre-Policy DSE

Solution to Problem P0: Assuming (for the moment) an interior solution, the solution to
problem P0 satisfies the following first-order condition with respect to θ and the free-entry
condition:

x = [1− e−θ∗u − θ∗ue−θ
∗
u ]v

x = θ∗ue
−θ∗up∗ + [1− e−θ∗u − θ∗ue−θ

∗
u ]u,

which combine to yield

p∗u =
[1− e−θ∗u − θ∗ue−θ

∗
u ](v − u)

θ∗ue
−θ∗u

. (B.6)

Now taking into account the constraint imposed by bidding limit u, the solution is p0 =
min{u, p∗u} and θ0 satisfying V s(p0, 0, θ0) = 0.

Algorithm: If Λ = 0, set P = {p0}, θ(p0) = θ0, σ(p0) = B/θ0 and V̄ u = V u(p0, 0, θ0).
For p ≤ u, set θ to satisfy V̄ u = V u(p, 0, θ(p)) or, if there is no solution to this equation, set
θ(p) = 0. For p > u set θ(p) = 0.

B.3 Algorithm for Constructing Post-Policy DSE

Solution to Problem P1: Assuming (for the moment) an interior solution, the solution to
problem P1 satisfies the two constraints with equality, V s(p∗c , λ

∗
c , θ
∗
c ) = 0 and V u(p∗c , λ

∗
c , θ
∗
c ) =

V̄ u, and the following first-order condition.

e−θ
∗
cp∗c =

(
1−

[
1− e−θ∗c − θ∗ce−θ

∗
c
]
v − x

(1− λ∗c)θ∗c
1

V̄ u − V̄ c

)

×
(

1− e−(1−λ∗c)θ∗c − (1− λ∗c)θ∗ce−(1−λ∗c)θ∗c

(1− λ∗c)θ∗c
(v − u) + (1− λ∗c)λ∗cθ∗ce−(1−λ∗c)θ∗c (u− c)

)
where V̄ c = V c(p∗c , λ

∗
c , θ
∗
c ) and V̄ u is set equal to the maximized objective of problem P0. Now

taking into account the constraint imposed by bidding limit c, the solution is p1 = min{c, p∗c}
with λ1 and θ1 satisfying V s(p1, λ1, θ1) = 0 and V u(p1, λ1, θ1) = V̄ u.

Algorithm: If 0 < Λ ≤ λ1, set P = {p0, p1}, λ(p0) = 0, θ(p0) = θ0, λ(p1) = λ1,
θ(p1) = θ1, σ(p0) = (λ1 − Λ)B/(λ1θ0) and σ(p1) = ΛB/λ1θ1. The equilibrium values are
V̄ u = V u(p0, 0, θ0) = V u(p1, λ1, θ1) and V̄ c = V c(p1, λ1, θ1). For p ≤ c, set λ and θ to satisfy
V̄ u = V u(p, λ(p), θ(p)) and V̄ c = V c(p, λ(p), θ(p)). If there is no solution to these equations
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with λ(p) > 0, set λ(p) = 0 and θ to satisfy V̄ u = V u(p, 0, θ(p)); or if there is no solution to
these equations with λ(p) < 1, set λ(p) = 1 and θ to satisfy V̄ c = V c(p, 1, θ(p)). If there is
still no solution with λ(p) ∈ [0, 1] and θ(p) ≥ 0, set λ(p) arbitrarily and set θ(p) = 0. For
p ∈ (c, u], set λ(p) = 0 and θ to satisfy V̄ u = V u(p, 0, θ(p)) or, if there is no solution to this
equation, set θ(p) = 0. Finally, for p > u, set λ(p) = 0 and θ(p) = 0.

B.4 Omitted Proofs

Proof of Proposition 1. Construct a DSE as per the algorithms in Appendix B.2. Condi-
tions 1(ii) and 2 of Definition 1 hold by construction. Condition 1(i) also holds for all p > u
because V s(p > u, λ, θ) = −x. To show that condition 1(i) holds for all p ≤ u, suppose
(FSOC) that there exists p ≤ u such that V s(p, 0, θ(p)) > 0, or

θ(p)e−θ(p)p+
[
1− e−θ(p) − θ(p)e−θ(p)

]
u > x. (B.7)

There exists p′ < p such that V s(p′, 0, θ(p)) = 0, or

θ(p)e−θ(p)p′ +
[
1− e−θ(p) − θ(p)e−θ(p)

]
u = x.

Note, however, that

V̄ u =
1− e−θ(p)

θ(p)
(v − u) + e−θ(p)(u− p)︸ ︷︷ ︸
V u(p,0,θ(p))

<
1− e−θ(p)

θ(p)
(v − u) + e−θ(p)(u− p′)︸ ︷︷ ︸
V u(p′,0,θ(p))

. (B.8)

The equality follows by construction since inequality (B.7) requires θ(p) > 0. The inequality
follows from the fact that V u is decreasing in the asking price and p′ < p. The pair {p′, θ(p)}
therefore satisfies the constraint set of problem (P0) and, according to (B.8), achieves a
higher value of the objective than {p0, θ0}: a contradiction.
Proof of Proposition 2. Construct a DSE as per the algorithm in Appendix B.3. Con-
ditions 1(ii), 1(iii) and 2 of Definition 1 hold by construction. Condition 1(i) also holds for
all p > u because V s(p > u, λ, θ) = −x. To show that condition 1(i) holds for all p ≤ u,
suppose (FSOC) that there exists a profitable deviation: either (1) there exists p ≤ u such
that λ(p) = 0 and V s(p, λ(p), θ(p)) > 0, or (2) there exists p ≤ c such that λ(p) > 0 and
V s(p, λ(p), θ(p)) > 0.

For case (1), the contradiction can be derived in the same manner as in the proof of Propo-
sition 1. For case (2), the profitable deviation under consideration is V s(p ≤ c, λ(p), θ(p)) >
0, or

θe−θp+
[
1− e−θ − θe−θ

]
c+

[
1− e−(1−λ)θ − (1− λ)θe−(1−λ)θ

]
(u− c) > x, (B.9)

where, for notational convenience, λ and θ refer to λ(p) and θ(p). There exists p′′ < p such
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that V s(p′′, λ, θ) = 0, or

θe−θp′′ +
[
1− e−θ − θe−θ

]
c+

[
1− e−(1−λ)θ − (1− λ)θe−(1−λ)θ

]
(u− c) = x.

Note, however, that

V̄ c =
e−(1−λ)θ − e−θ

λθ
(v − c) + e−θ(c− p)︸ ︷︷ ︸
V c(p,λ,θ)

<
e−(1−λ)θ − e−θ

λθ
(v − c) + e−θ(c− p′′)︸ ︷︷ ︸
V c(p′′,λ,θ)

(B.10)

The equality follows by construction since inequality (B.9) requires θ > 0 and, by assumption,
λ > 0. The inequality follows from the fact that V c is decreasing in the asking price and
p′′ < p. Similarly, V̄ u = V u(p, λ, θ) < V u(p′′, λ, θ). The triple {p′′, λ, θ} therefore satisfies
the constraint set of problem (P1) and, according to (B.10), achieves a higher value of the
objective than {p1, λ1, θ1}: a contradiction.

B.5 Numerical Simulation

To illustrate the predictions of the theory, we parameterize and simulate a version of the
model that has been extended to incorporate a form of seller heterogeneity. Specifically,
we assume that, upon listing their house for sale at cost x, a seller’s reservation value is
an idiosyncratic random variable that takes one of N possible values, {r1, . . . , rN} satisfying
r1 < · · · < rN < u, with equal probability.43 The free entry condition on the supply side must
now be satisfied in expectation. Modifying the model environment along this dimension does
not affect the incentives facing buyers, but the expressions for sellers’ expected net payoffs
must be modified accordingly. For example, if the asking price is low enough to elicit bids
from both unconstrained and constrained buyers, the expected net payoff for a seller with
reservation value rn < c is

V s
n (p ≤ c, λ, θ) = rn − x+ π(1)(p− rn) +

∞∑
k=2

π(k)

{
[φk(0) + φk(1)] c+

k∑
j=2

φk(j)u− rn

}
= e−θrn − x+ θe−θp+

[
1− e−θ − θe−θ

]
c

+
[
1− e−(1−λ)θ − (1− λ)θe−(1−λ)θ

]
(u− c).

Sellers with different ex post reservation values will implement different asking price strate-
gies, which permits the characterization of equilibria featuring bunching from both above and
below simultaneously.

For our parameterization we set c = 1000, v = 1100 and x = 50, so that the unit
of measurement corresponds to $1,000 (CAD). We then choose N = 200 equally spaced
reservation values, {r1, . . . , r200} = {900, . . . , 1041}, and set u = 1070 so that the pre-policy

43The interpretation is that a seller may not be certain about their value of moving/staying in advance.
Their precise reservation value is ascertained at some stage of the listing process.
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equilibrium asking prices range from 950 to 1,050. Finally, we calibrate the overall fraction
of constrained buyers to Λ = 0.0061, which means only 0.61 percent of prospective buyers in
this segment are constrained by the policy in this particular parametrization of the model.

The simulated distributions of asking prices are plotted in Figure B1a. These distribu-
tions have been rescaled to accommodate (unmodeled) asking prices outside of [950, 1050].
Specifically, we apply scale factors 0.0300 and 0.0390 to the pre- and post-policy asking price
distributions to match the shares of overall listings in this segment of the Toronto market.
Next, the pre- and post-policy distributions are anchored at 0.87 and 0.85 at asking price
c = 1000 to mimic the percentiles of the $1M home in the Toronto market in the two sam-
ple periods (see summary statistics in Table 1, discussed below in Section 4). Figure B1b
plots the differences in the simulated distribution functions, along with a counterfactual ob-
tained using the pre-policy asking price distribution, but shifted and rescaled to reflect the
post-policy percentile at c = 1000 and measure of sellers in the [950, 1050] segment. The
discontinuity at the threshold is a visual representation of Prediction 1. Following the intro-
duction of the policy, 25 out of the 200 seller types (12.5 percent of sellers) find it optimal to
list at exactly price c. Of these sellers, roughly one third would have otherwise listed further
below the threshold, the remaining two thirds would have listed above. Note that the excess
mass of listings at policy threshold c = 1000 matches our estimates in Section 5. The share
of constrained buyers, Λ = 0.0061, was chosen precisely to mimic this feature of the data.

Figure B2a displays the simulated sales price distributions, and Figure B2b plots their
differences. The pre- and post-policy distributions are anchored at 0.86 and 0.84 at sales
price c = 1000 to again mimic the summary statistics in Table 1. The scale factors applied to
the simulated sales price distributions, however, are the same as those applied to the asking
price distributions. Notice that the discontinuity in Figure B2b is much less pronounced
than the discontinuity in Figure B1b: an unmistakable illustration of Prediction 2. Many of
the homes listed with asking price c sell for more than c in a bidding war involving multiple
unconstrained buyers.

To illustrate Prediction 3, we plot the expected time to sell (i.e., the reciprocal of the
probability of selling) as well as the probability of selling-above-asking, as functions of the
asking price, in Figures B3a and B4. The pre- and post-policy differences are plotted in
Figures B3b and B4b. As discussed above, the liquidity of homes listed above the threshold
is unaffected by the policy. In contrast, homes listed below the threshold post-policy attract
both constrained and unconstrained buyers and consequently sell with higher probability
and are more likely to sell for more than the asking price. The threshold nature of the policy
induces discrete changes in these liquidity measures at asking price c = 1000.
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C Estimation Details

C.1 Cross Validation

We use a 5-fold cross validation procedure to select unknown hyperparameter involved in our
estimation procedure. In particular, we aim to select the number of excluded bins to the left,
L, and right R, the order of polynomial, p, and the estimation window, W , that determines
how many house price bins are used in the estimation procedure. The latter can be thought
of as a bandwidth choice for a local polynomial regression with rectangular weights (Imbens
and Lemieux 2008). In order to select the quadruple θ ≡ {L,R, p,W} we use a minimum
mean squared error criterion.

We begin our procedure by splitting the microdata on houses into 5 groups in a struc-
tured way. We cross validate both steps of our estimating procedure, first constructing
the reweighted distribution functions and then estimating the bunching regression. Since
the construction of the CDFs depend on ordered data, we respect this by sorting the
data in increasing order of house price. We construct fold 1 by taking the observations
n1 ∈ {1, k+ 1, 2k+ 1, ...}, the 2nd fold by taking observations n2 ∈ {2, k+ 2, 2k+ 2, ...}, and
so on, where k = 5 in our implementation.

We estimate both steps of our empirical procedure using observations in n1, . . . , n4 and
the only the first step of our procedure (the construction of the empirical distribution) using
observations in the 5th fold. We iterate the second step of our empirical procedure over
a grid of potential hyperparameter values in the set L,R ∈ {1, 2, . . . , 8}, p ∈ {2, 3}, and
W ∈ {20, 25, 30}. For each combination of these values, we fit the bunching estimator on
folds n1, . . . , n4 and using the estimated coefficients, predict the residuals on n5. When
estimating our bunching estimator, we impose the adding up constraints given in (9) and
(10) to assist in regularization. These restrictions are not imposed in our estimation in our
main text. We repeat this procedure five times, holding out a different fold each time. For
each choice of θ the cross-validation error is:

CV (θ) =
1

W · 5

5∑
k

W∑
j

(
∆̂S(yj)nk

− ̂̂∆S(yj)θ,n−k

)2

Where ̂̂∆S(yj)θ,n−k
are fitted values for the k fold from the bunching estimator estimated on

folds n−k with parameter values θ, W is the estimation window (the number of observations
used in the bunching estimation). We choose as our optimal hyperparameters:

θOpt. = argminθ∈{θ1,...,θV }CV (θ)

where V is the total number of combinations of parameter values in {L,R, p,W}. We also
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compute the standard error for the cross-validation, letting

CVk(θ) =
1

W

W∑
j

(
∆̂S(yj)nk

− ̂̂∆S(yj)θ,n−k

)2

we compute SD(θ) =
√

Var (CV1(θ), . . . , CV5) and SE = SD(θ)/
√

5 as the standard error of
CV (θ). We use a ‘one standard error rule’: CV (θ) ≤ CV (θopt.)±SE(θOpt.) to find the widest
and narrowest excluded region that is within one standard error of the optimum chosen θOpt.
A graphical representation of this procedure is given in Figure C1. In the Panel (a), the
root-mean squared error for each θ is plotted against the width of the excluded region (given
by L+R) for asking price. Each dot on the figure represents one iteration of our procedure.
The solid line gives the ‘one standard error’ rule. The points chosen by our procedure are
labelled as (L,R). For instance, in panel (a), the optimum excluded region is given by (4, 5),
the narrowest by (3, 4), and the widest by (5, 5). Panel (b) shows the results for the sales
prices. Notice that the CV values are much flatter and that no excluded region (1, 1) is not
rejected by the one standard error rule.

../Figures-dfl-T2-General/Figure-CV_ask.pdf

(a) Cross-Validation for Asking Prices

../Figures-dfl-T2-General/Figure-CV_sold.pdf

(b) Cross-Validation for Sales Prices

Figure C1
Cross-Validation Procedure

Notes: Panel (a) plots the root-mean squared error of each iteration of the cross-validation procedure for
a given θ against the width of the excluded region for the city of Toronto using asking prices. Panel (b)
plots the root-mean squared error of each iteration of the cross-validation procedure for a given θ against
the width of the excluded region for the city of Toronto using sales prices. The chosen width of the excluded
region is labelled on each panel.
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D Supplemental Summary Statistics

Table D1
Summary Statistics for Condominiums and Townhouses: City of Toronto

Pre-Policy Post-Policy

Asking Sales Asking Sales

All Condos

Mean 383058.22 377722.79 390153.40 381873.22
25th Pct 275000.00 270000.00 278999.00 270000.00
50th Pct 349000.00 343000.00 349900.00 345000.00
75th Pct 439900.00 437000.00 454900.00 448000.00

N 21768.00 21768.00 18257.00 18257.00
Median Duration 20.00 20.00 24.00 24.00
$1M Percentile 0.99 0.99 0.99 0.99

Condos $0.9–1.0M
N 92.00 89.00 100.00 105.00

Median Duration 22.50 17.00 18.50 18.00
Mean Price 963255.20 943872.89 968476.07 949377.90

Condos $1.0–1.1M
N 50.00 71.00 46.00 47.00

Median Duration 22.50 30.00 19.50 23.00
Mean Price 1071297.66 1051929.44 1073844.09 1046271.06

Notes: This table displays summary statistics for the city of Toronto for condominiums and town-
houses. The pre-policy period is defined as July 15th, 2011, to June 15th, 2012, and the post-policy
period is defined as July 15th, 2012, to June 15th, 2013. The columns labeled Asking refer to asking
prices and the columns labeled Sales refer to sales prices. Duration refers to the number of days a home
is on the market.
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E Supplemental Material for the Bunching Estimation

In this section, we estimate an extensive set of specifications to assess the robustness of our
main results.

E.1 Alternative Parameterizations: City of Toronto

Robustness to potential extensive margin responses in bunching estimates: Our
first empirical exercise deals with the concern that the bunching estimates could be altered by
plausible policy responses above the $1M threshold. Suppose the introduction of the policy
hindered potential listings/transactions above $1M: an issue that is interesting in its own
right and separately investigated in Section 5.3. In that case, our counterfactual difference
in distributions, estimated by fitting a flexible polynomial through the empirical difference
in distributions excluding an area around the $1M threshold, would not accurately reflect
what would have occurred in the absence of the policy. Note that this is a common issue
in the bunching literature (Kopczuk and Munroe 2015; Best et al. 2018; Best and Kleven
2018). As suggested by Kleven (2016), we construct the counterfactual using only data
below $1M under the assumption that the distribution below the threshold is unaffected by
the policy. These results are presented in column (2) of Tables E1 and E2, where we use
the same excluded region and polynomial order as in our main specification (reproduced in
column (1) for ease of reference), and extend the estimation window leftward in order to
maintain the same number of bins despite only using data below $1M.44 These results are
similar to the other columns of the tables, providing reassurance of the robustness of our
main bunching estimates.

Robustness to alternative parametrizations: To the extent that the policy might
have spillover effects below $1M,45 we rely on our data-driven method for model selection
to appropriately determine, among other things, the estimation window and the size of the
exclusion region. Our main estimation uses a 5-fold cross-validation procedure and a grid
search over several values of each parameter. The results are reproduced in column (1) of
Tables E1 and E2. Columns (3) and (4) use alternative excluded regions. These regions are
chosen based on the cross-validation “plus one-standard error rule” outlined in Appendix

44In implementing this specification, we add additional constraints to the estimating procedure. In par-
ticular, to avoid unstable behavior of polynomial estimates near boundary points, we restrict the coefficients
within the excluded region to be negative to the left of $1M (γl < 0) and positive in the excluded region in
the bins above $1M (αr > 0). The idea behind these constraints are similar to natural splines that place
shape restrictions near boundary values. Note that these constraints do not impose the adding up conditions
in (9) or (10), but simply restricts the extrapolated polynomial counterfactual to lie between the observed
∆̂S(yj) within the excluded region.

45One might be concerned that congestion externalities arising from, for example, decreasing returns to
scale in the matching process between buyers and sellers, cause the excess bunching in listings just below $1M
to spill into even lower price segments. Such spillover effects are unlikely, however, as we find no evidence of
excess under-listing in price bins below $975K following the implementation of the policy (results available
upon request).
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C.1, where we choose the widest and narrowest excluded region specifications whose MSE
is no more than one standard error above the minimum MSE obtained from the model
in Column (1). Column (3) adds one excluded bin to the left of the threshold, whereas
Column (4) subtracts one bin from the left and the right of the excluded region. These
two specifications yield nearly identical results. Column (5) extends the estimation window
by $25,000. Column (6) includes a fourth-order, rather than third-order polynomial used
in the baseline specification. Column (7) imposes the constraints in equations (9) and (10)
during estimation. Columns (3) – (7) of Table E2 present these same robustness checks for
sales prices. Reassuringly, the bunching estimates are extremely robust, suggesting that our
results are not driven by the selection of the size of the estimation window, order of the
polynomial, or the width of the excluded region.

We present a larger set of specification checks in Figures E1 and E2 to further character-
ize the sensitivity of our bunching estimation results to various parameterizations. Rather
than picking a few to report, we present a graphical representation of over 1,400 parameter
combinations to display the sensitivity of our results to, for example, the width of the esti-
mation window and the size of the excluded regions. As the estimation window gets larger,
the polynomial should also become more flexible to accommodate observations further from
the threshold. With this in mind, the extensive set of robustness specifications displayed in
Figures E1 and E2 reveal once again that estimates of the threshold effects of the policy are
remarkably robust.

Tables E1 and E2 correspond to the city of Toronto. Tables E5 and E6 in Appendix E.3
restrict samples to the central district and yield the same conclusions.

Placebo tests: Our next empirical exercise involves two placebo tests as additional checks
of our identification strategy. We first designate two years prior to the implementation of
the million dollar policy as placebo years. Specifically, we estimate our baseline specification
for asking and sales prices (columns (1) and (2) of Table 2) to compare the distribution of
house prices between the period from July 15th, 2011, to June 15th, 2012, and the period
from July 15th, 2010, and June 15th, 2011. Between and during these time periods, there
were no changes to policies specifically affecting houses around the $1M threshold, and so we
would not expect to find patterns of excess bunching. The middle row of Table E3 presents
the results. The total observed jump at $1M is 0.0006 for the asking price and 0.0001 for the
sales price. Neither are statistically significant, as expected. In a similar spirit, in Tables E7
and E8, we compare the last six months of 2011 with the first six months of 2012 in column
(6) and the last six months of 2012 and the first six months of 2013 in column (7). The
former are two periods before the million dollar policy, the latter are two periods after the
policy. As expected, we find no evidence of excess bunching in asking or sales prices around
the $1M threshold.

Second, we designate alternative placebo thresholds at prices well below or above the
$1M threshold, and again estimate our baseline specification at each of these points. The
idea is straightforward: since the million dollar policy generates a notch in the downpay-
ment required of buyers at precisely $1M, house prices in market segments well below or
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Table E1
Robustness Checks to Alternative Parameterizations (Asking Price): City of Toronto

Asking Price

(1) (2) (3) (4) (5) (6) (7)

Jump at cut-off 0.0045∗ 0.0045∗ 0.0045∗ 0.0045∗ 0.0045∗ 0.0045∗ 0.0045∗

(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)

Total Response 0.0039∗ 0.0041∗ 0.0039∗ 0.0039∗ 0.0035∗ 0.0040∗ 0.0049∗

(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0013)

From Below -0.0018∗ -0.0019∗ -0.0018∗ -0.0018∗ -0.0018∗ -0.0024∗ -0.0022∗

(0.00072) (0.00088) (0.00074) (0.00069) (0.00078) (0.00074) (0.00087)

From Above 0.0020∗ 0.0022 0.0021∗ 0.0021∗ 0.0017 0.0016 0.0027∗

(0.00089) (0.0013) (0.00088) (0.00087) (0.00088) (0.00093) (0.00096)

Observations 41305 41305 41305 41305 41305 41305 41305
Excluded Bins:

L 4 4 5 3 4 4 4
R 5 5 5 4 5 5 5

Tests of Fit:

B −
∑L

l β
l
B -.0013 -.0012 -.0011 -.00063 -.0016 -.0023

(.0013) (.00096) (.0018) (.00061) (.0015) (.0012)

A−
∑R

r β
r
A .0025 .00049 .0025 .0018 .0032 .00093

(.0016) (.0064) (.0016) (.0011) (.002) (.0018)
Joint p-val. 0.20 0.46 0.27 0.19 0.15 0.17

Impact:

∆ Houses at cutoff 85.9 91.4 86.0 85.7 77.7 88.9 108.5

Specifications:

Poly. Order 3 3 3 3 3 4 3
Window 20 20 20 20 25 20 20
Other CV Opt. Extensive CV Wide CV Narrow Constrained

Notes: This table displays the bunching estimates of the million dollar policy for the city of Toronto.
The dependent variable is ∆̂S(yj) constructed using asking prices. The rows of the table correspond to
the components of (8). The first row shows the total jump at the million dollar threshold, the second

row shows the total response due to the policy (β̂A − β̂B), and the last two rows show the response from

above (β̂A) and below (β̂B) the threshold, respectively. Standard errors, in parentheses, are constructed
via bootstrap discussed in the main text. (∗) denotes significance at the 5% level.

14



Table E2
Robustness Checks to Alternative Parameterizations (Sales Price): City of Toronto

Sales Price

(1) (2) (3) (4) (5) (6) (7)

Jump at cut-off 0.00094∗ 0.00094∗ 0.00094∗ 0.00094∗ 0.00094∗ 0.00094∗ 0.00094∗

(0.00042) (0.00042) (0.00042) (0.00042) (0.00042) (0.00042) (0.00042)

Total Response 0.00050 0.00032 0.00035 0.00051 0.00048 0.00054 0.00035
(0.00053) (0.00049) (0.00052) (0.00055) (0.00047) (0.00054) (0.00045)

From Below 0.00017 -5.3e-38 0.00051 0.00015 0.00016 -0.0000099 0.00013
(0.00060) (0.00023) (0.00077) (0.00060) (0.00066) (0.00051) (0.00060)

From Above 0.00067 0.00032 0.00086 0.00065 0.00065 0.00053 0.00048
(0.00079) (0.00054) (0.00090) (0.00077) (0.00080) (0.00073) (0.00058)

Observations 41305 41305 41305 41305 41305 41305 41305
Excluded Bins:

L 1 1 3 2 1 1 1
R 2 2 8 1 2 2 2

Tests of Fit:

B −
∑L

l β
l
B .00017 -5.3e-38 .00058 .000058 .00016 -9.9e-06

(.0006) (.00023) (.0009) (.00037) (.00066) (.00051)

A−
∑R

r β
r
A -.00036 -.00032 .0043 .00065 -.00027 -.00039

(.00057) (.00035) (.004) (.00077) (.00055) (.00058)
Joint p-val. 0.82 0.64 0.52 0.67 0.88 0.74

Impact:

∆ Houses at cutoff 11.1 7.03 7.83 11.3 10.8 11.9 7.75

Specifications:

Poly. Order 3 3 3 3 3 4 3
Window 20 20 20 20 25 20 20
Other CV Opt. Extensive CV Wide CV Narrow Constrained

Notes: This table displays the bunching estimates of the million dollar policy for the city of Toronto.
The dependent variable is ∆̂S(yj) constructed using sales prices. The rows of the table correspond to
the components of (8). The first row shows the total jump at the million dollar threshold, the second

row shows the total response due to the policy (β̂A − β̂B), and the last two rows show the response from

above (β̂A) and below (β̂B) the threshold, respectively. Standard errors, in parentheses, are constructed
via bootstrap discussed in the main text. (∗) denotes significance at the 5% level.
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Figure E1
Examining Robustness to Deviations from Baseline

Notes: Each panel of the figure examines robustness to alternative parametrizations of our estimation
procedure. Each figure displays our optimal specification (estimation widow = 20, polynomial = 3, excluded
left = 4, excluded right = 5) and assesses 3 deviations from this by varying the estimation window (Panel
A), the polynomial order (Panel B), the excluded bins on the left (Panel C) and the excluded bins on the
right (Panel D).

well above the $1M cut-off should not be affected by the policy in a discontinuous man-
ner. Excess bunching at selected placebo thresholds (multiples of $25,000 between $800,000
and $1,150,000) would thus represent contradictory evidence. Table E3 contains 50 placebo
threshold estimates: 24 during the years overlapping the implementation of the policy for
alternative price thresholds (the estimates excluding the $1M threshold), and 26 during the
pre-policy years. Out of the 50 bunching estimates, only 4 are statistically significant and
only 1 is economically large. Most estimates are statistically insignificant and economically
small. Taken individually, each estimate alone may not be sufficient to alleviate concerns
regarding marketing convention, psychology bias or other threshold factors unrelated to
mortgage insurance regulation. But all together, these estimates provide compelling evi-
dence that the bunching results presented in Section 5.1 provide an accurate measure of the
threshold effects of the million dollar policy on house prices.
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Table E3
Robustness Checks to Alternative Cut-offs and Period

Post-Policy Difference Pre-Policy Difference

(1) (2) (3) (4)
Asking Sales Asking Sales

800000 0.0017 -0.0015∗ 0.0018 -0.0000097
(0.0015) (0.00077) (0.0014) (0.00073)

825000 -0.00015 -0.000038 -0.00023 0.00032
(0.00056) (0.00077) (0.00047) (0.00071)

850000 0.00100 0.00068 0.00088 -0.000087
(0.0013) (0.00078) (0.0012) (0.00069)

875000 0.00011 -0.000064 0.00030 0.00034
(0.00045) (0.00070) (0.00038) (0.00063)

900000 0.00037 -0.00059 0.0030∗ 0.00039
(0.0013) (0.00072) (0.0012) (0.00059)

925000 -0.00055 0.00099 -0.00016 0.00033
(0.00042) (0.00066) (0.00035) (0.00059)

950000 -0.00098 -0.00022 -0.0015 -0.00085
(0.00090) (0.00062) (0.00081) (0.00051)

1000000 0.0039∗ 0.00051 0.00062 0.00013
(0.0011) (0.00054) (0.00092) (0.00043)

1050000 -0.0015∗ 0.00030 -0.00027 -0.000018
(0.00066) (0.00044) (0.00058) (0.00037)

1075000 -0.00038 -0.00055 0.00011 0.00026
(0.00023) (0.00043) (0.00022) (0.00041)

1100000 0.0012 -0.00011 0.00088 -0.00045
(0.00073) (0.00036) (0.00066) (0.00031)

1125000 -0.000066 -0.00062 0.00020 0.00041
(0.00025) (0.00036) (0.00020) (0.00036)

1150000 -0.00056 0.00055 -0.0012∗ -0.00064
(0.00061) (0.00040) (0.00060) (0.00033)

Notes: This table displays the bunching estimates at various price
thresholds for the city of Toronto. The dependent variable is ∆̂S(yj)
constructed using either asking prices (columns 1 and 3) or sales prices
(columns 2 and 4). Each row of the table shows the total policy com-
ponent of equation (8) using price thresholds indicated in the left-side
panel. The post-policy difference (columns 1 and 2) use data on sales one
year before and after the million dollar policy. The pre-policy difference
(columns 3 and 4) compares the two years prior to the implementation.
Standard errors, in parentheses, are constructed via bootstrap discussed
in the main text. (∗) denotes significance at the 5% level.
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E.2 Robustness to Exclusion of Short Ownership Spells

Our analysis in Section 5 hinges on the assumption that homes further below $1M are
unaffected by the policy. This is by design of the million dollar policy. One legitimate
concern, however, is that the policy may have unintended consequences in market segments
below the threshold. For example, suppose a seller of a below-$1M home intends to trade-
up to an above-$1M home. The seller may be constrained in that the proceeds from the
sale of their current home must not compromise their ability to make a 20% downpayment
on their next home. To that end, there may be an incentive to raise the asking price and
then patiently await a buyer with a high willingness to pay. This could affect our estimated
counterfactual and hence the validity of the bunching estimates if the revised listing/selling
strategy affects prices within the estimation window but below the excluded region.

To address this concern, we consider the possibility that sellers below $1M put down the
minimum 5% with a 25-year amortizing loan when purchasing their home initially and are
contemplating trading up to an above-$1M Toronto home. With an insured mortgage interest
rate of 4% and 5% annual house price appreciation, the seller of a $900K home in 2012 would
have accumulated over $316K in home equity, which is enough for a 20% dowpayment on a
$1.5M home purchase, provided they owned their home for at least 5 years (i.e., purchased
the home in 2007 or earlier).46 In Table E4 of Appendix E.2, we report specifications that
exclude sellers that bought their current home within the previous three, four, or five years.
Excluding sellers in price segments below $1M with short ownership spells ensures that the
estimated counterfactual is unaffected by a trading-up constraint. As shown in Table E4,
the resulting bunching estimates are very similar to those reported in Table 2, alleviating
concerns about constrained buyer-sellers in the Toronto market.

46A shorter ownership spell implies potentially less home equity. Under similar assumptions, the seller of
a $900K home in 2012 would have accumulated nearly $268K in home equity if they purchased the home in
2008 (i.e., a 4-year ownership spell), and around $216K if they purchased in 2009 (i.e., a 3-year ownership
spell).
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Table E4
Assessing Robustness to Excluding Short Ownership Spells

3-years 4-years 5-year

(1) (2) (3) (4) (5) (6)
Asking Sales Asking Sales Asking Sales

Jump at cut-off 0.0044∗ 0.00090 0.0045∗ 0.00094∗ 0.0046∗ 0.0010∗

(0.0011) (0.00047) (0.0011) (0.00046) (0.0013) (0.00049)

Total Response 0.0038∗ 0.00045 0.0038∗ 0.00062 0.0039∗ 0.00066
(0.0011) (0.00058) (0.0012) (0.00057) (0.0012) (0.00062)

From Below -0.0018∗ -0.000046 -0.0018∗ 0.000042 -0.0020∗ 0.000023
(0.00082) (0.00059) (0.00082) (0.00063) (0.00082) (0.00071)

From Above 0.0020∗ 0.00040 0.0020∗ 0.00066 0.0019∗ 0.00069
(0.00087) (0.00079) (0.00095) (0.00080) (0.00093) (0.00085)

Observations 38053 38053 36281 36281 34360 34360
Excluded Bins:

L 4 1 4 1 4 1
R 5 2 5 2 5 2

Tests of Fit:

B −
∑L

l β
l
B -.00085 -.000046 -.00095 .000042 -.00065 .000023

(.0014) (.00059) (.0014) (.00063) (.0014) (.00071)

A−
∑R

r β
r
A .0026 -.00033 .0028 -.00053 .0026 -.00056

(.0016) (.0006) (.0016) (.00066) (.0017) (.00068)
Joint p-val. 0.24 0.81 0.17 0.70 0.32 0.67

Impact:

∆ Houses at cutoff 77.7 9.14 73.9 12.1 71.0 12.1

Specifications:

Poly. Order 3 3 3 3 3 3
Window 20 20 20 20 20 20

Notes: This table displays the bunching estimates of the million dollar policy for the city of Toronto
when houses with short ownership spells are removed from the sample. Short ownership spells are
defined as houses that where bought and sold within 3 years (columns 1 and 2), 4 years (columns 3 and
4), or 5 years (columns 5 and 6). The dependent variable is ∆̂S(yj) constructed using using either asking
prices (columns 1, 3 and 5) or sales prices (columns 2, 4 and 6). The rows of the table correspond to
the components of (8). The first row shows the total jump at the million dollar threshold, the second

row shows the total response due to the policy (β̂A− β̂B), and the last two rows show the response from

above (β̂A) and below (β̂B) the threshold, respectively. Standard errors, in parentheses, are constructed
via bootstrap discussed in the main text. (∗) denotes significance at the 5% level.
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Figure E2
Robustness of Excess Bunching Estimates to Various Alternative Parametrizations

Notes: Each panel of the figure examines the robustness of estimates to alternative parametrizations of
our estimation procedure. Panel A shows how the parameter Total varies as we alter the polynomial order
(displayed in each column), the estimation window around the $1M threshold (the x-axis), and the excluded
region (number of bins excluded to the left + the number of bins excluded to the right, and highlighted
by color shading). The yellow dots correspond to our optimal excluded region (left = 4, right = 5) and
the baseline specification (Column 1 of Table 2 in the main text) is highlighted in the second column and
illustrated by the dashed line in other columns. Panel B shows the corresponding t-statistics. In panel C,
we show the total fraction of bunching that comes from Above (Above / Total).
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E.3 Alternative Specifications: Central District

Table E5
Robustness of Regression Bunching Estimates to Alternative Parametrizations: Central
Toronto

Asking Price

(1) (2) (3) (4) (5) (6) (7)

Jump at cut-off 0.0094∗ 0.0094∗ 0.0094∗ 0.0094∗ 0.0094∗ 0.0094∗ 0.0094∗

(0.0032) (0.0032) (0.0032) (0.0032) (0.0032) (0.0032) (0.0032)

Total Response 0.0068∗ 0.0069∗ 0.0069∗ 0.0072∗ 0.0068∗ 0.0096∗ 0.0088∗

(0.0031) (0.0031) (0.0031) (0.0030) (0.0030) (0.0043) (0.0030)

From Below -0.0049∗ -0.0047 -0.0049∗ -0.0051∗ -0.0049∗ -0.0052 -0.0053
(0.0022) (0.0024) (0.0022) (0.0023) (0.0022) (0.0027) (0.0028)

From Above 0.0020 0.0021 0.0019 0.0021 0.0020 0.0044 0.0035
(0.0025) (0.0026) (0.0024) (0.0024) (0.0024) (0.0031) (0.0037)

Observations 9008 9008 9008 9008 9008 9008 9008
Excluded Bins:

L 3 5 3 3 3 3 3
R 4 6 3 4 4 4 4

Tests of Fit:

B −
∑L

l β
l
B -.00045 .0019 -.00051 -.00065 -.00045 -.001

(.0022) (.0068) (.0022) (.0023) (.0021) (.)

A−
∑R

r β
r
A .0048 .0087 .0031 .0039 .0048 .0023

(.0041) (.0087) (.002) (.0046) (.0036) (3.9e-11)
Joint p-val. 0.52 0.59 0.32 0.68 0.42 . 0.76

Impact:

∆ Houses at cutoff 33.8 33.9 33.9 35.7 33.8 47.5 43.6

Specifications:

Poly. Order 2 2 2 2 3 2 2
Window 25 25 25 30 25 25 25
Other CV Opt. CV Wide CV Narrow Constrained Extensive

Notes: This table displays the bunching estimates of the million dollar policy for central Toronto. The
dependent variable is ∆̂S(yj) constructed using asking prices. The rows of the table correspond to the
components of (8). The first row shows the total jump at the million dollar threshold, the second row

shows the total response due to the policy (β̂A − β̂B), and the last two rows show the response from

above (β̂A) and below (β̂B) the threshold, respectively. Standard errors, in parentheses, are constructed
via bootstrap discussed in the main text. (∗) denotes significance at the 5% level.
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Table E6
Robustness of Regression Bunching Estimates to Alternative Parametrizations: Central
Toronto

Sales Price

(1) (2) (3) (4) (5) (6) (7)

Jump at cut-off 0.0032∗ 0.0032∗ 0.0032∗ 0.0032∗ 0.0032∗ 0.0032∗ 0.0032∗

(0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014)

Total Response 0.0028 0.0028 0.0028 0.0027 0.0026 0.0022 0.0034
(0.0017) (0.0016) (0.0017) (0.0016) (0.0018) (0.0016) (0.0021)

From Below -0.0013 -0.0015 -0.0014 -0.0019 -0.0013 -0.0015 0
(0.0018) (0.0019) (0.0018) (0.0020) (0.0018) (0.0018) (0.0011)

From Above 0.0014 0.0013 0.0014 0.00086 0.0013 0.00069 0.0034
(0.0022) (0.0023) (0.0021) (0.0023) (0.0023) (0.0017) (0.0026)

Observations 9008 9008 9008 9008 9008 9008 9008
Excluded Bins:

L 1 1 1 1 1 1 1
R 2 4 1 2 2 2 2

Tests of Fit:

B −
∑L

l β
l
B -.0013 -.0015 -.0014 -.0019 -.0013 -.0015 0

(.0018) (.0019) (.0018) (.002) (.0018) (.0018) (.0011)

A−
∑R

r β
r
A -.0012 -.0018 .0014 -.0011 -.001 0∗ -.00062

(.0018) (.0048) (.0021) (.0017) (.0017) (0) (.0014)
Joint p-val. 0.45 0.70 0.25 0.31 0.46 0.43 0.90

Impact:

∆ Houses at cutoff 13.7 13.9 13.7 13.5 13.1 10.7 16.7

Specifications:

Poly. Order 2 2 2 2 3 2 2
Window 20 20 20 25 20 20 20
Other CV Opt. CV Wide CV Narrow Constrained Extensive

Notes: This table displays the bunching estimates of the million dollar policy for central Toronto. The
dependent variable is ∆̂S(yj) constructed using sales prices. The rows of the table correspond to the
components of (8). The first row shows the total jump at the million dollar threshold, the second row

shows the total response due to the policy (β̂A − β̂B), and the last two rows show the response from

above (β̂A) and below (β̂B) the threshold, respectively. Standard errors, in parentheses, are constructed
via bootstrap discussed in the main text. (∗) denotes significance at the 5% level.
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E.4 Robustness to Alternative Timing Choices

E.4.1 Alternative Timing Choices

We assess the robustness of our main results to alternative choices of the pre- and post-policy
periods. Our baseline specification groups pre- and post-policy periods by listing date. In
column (1) of Table E7, we instead use the sold date to distinguish the two periods. Our
baseline omits the few weeks following the announcement of the policy but before its imple-
mentation. In column (2) of Table E7, we use the entire year including the announcement
period. This gives results that are very similar to our baseline. Column (3) takes the post-
policy period to be the six months following implementation and the pre-policy period to
be the six months prior to implementation. The results using this timing choice are slightly
greater in magnitude than our baseline results. To further minimize the possible confounding
effects of changing market conditions, the pre- and post-policy periods are further reduced
to three-month windows in column (4). The estimates become less significant due to a much
reduced sample size, but the coefficients remain comparable. One issue with columns (3)
and (4) is that they compare two different sets of months within the same year, and so one
might worry about seasonality of housing sales. Column (5) addresses this by again taking
a six-month window, but using as a pre-policy period the same six calendar months in the
prior year. By leaving out the six months between the two periods, we likely also circumvent
potential issues related to properties listed before the policy but sold after. Across all these
specifications, the bunching estimates are remarkably consistent, highlighting the robustness
of the main findings. Table E8 repeats this exercise using sales prices. Again, we find that
our main results are not sensitive to the choice of the pre- and post-policy time periods.47

47Tables E9 and E10 in Appendix E.4.2 present the same specifications as in columns (2) – (7) of Tables
E7 and E8, except that pre- and post-policy periods are defined instead by sold date rather than listing date.
The results are nearly identical.
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Table E7
Robustness Checks to Alternative Time Choices (Asking Price)

Asking Price

(1) (2) (3) (4) (5) (6) (7)

Jump at cut-off 0.0048∗ 0.0044∗ 0.0049∗ 0.0030 0.0057∗ 0.0011 -0.00047
(0.0011) (0.00090) (0.0016) (0.0020) (0.0015) (0.0010) (0.00090)

Total Response 0.0040∗ 0.0037∗ 0.0051∗ 0.0037 0.0050∗ 0.00026 -0.0014
(0.0011) (0.00092) (0.0015) (0.0021) (0.0016) (0.0012) (0.00081)

From Below -0.0018∗ -0.0018∗ -0.0026∗ -0.0022 -0.0027∗ -0.00018 0.0010
(0.00084) (0.00081) (0.0011) (0.0013) (0.00084) (0.00082) (0.00085)

From Above 0.0022∗ 0.0019∗ 0.0024∗ 0.0016 0.0023 0.000084 -0.00032
(0.0010) (0.00078) (0.0011) (0.0017) (0.0016) (0.0010) (0.00075)

Observations 40838 44766 22257 12634 17071 24068 19061
Excluded Bins:

L 4 4 4 4 4 4 4
R 5 5 5 5 5 5 5

Tests of Fit:

B −
∑L

l β
l
B -.001 -.0014 -.0037 -.0029 -.0013 .0024 .0018

(.0012) (.0016) (.0021) (.0022) (.0013) (.0016) (.0015)

A−
∑R

r β
r
A .003 .0023 .0027 .001 .0015 -.0012 .00082

(.002) (.0013) (.0023) (.0025) (.0023) (.0015) (.0017)
Joint p-val. 0.22 0.16 0.16 0.42 0.45 0.32 0.35

Impact:

∆Houses at cutoff 88.3 87.6 73.8 29.0 46.4 2.46 -10.1

Specifications:

Poly. Order 3 3 3 3 3 3 3
Window 20 20 20 20 20 20 20
Timing Sold Date Include 6 Months 3 Months Jul.-Dec. 2012 Jan.-Jun. 2012 Jul.-Dec. 2012

Announce- Before Before VS. VS. VS.

ment and After and After Jul.-Dec. 2011 Jul.-Dec. 2011 Jan.-Jun. 2013

Notes: This table displays the bunching estimates of the million dollar policy for the city of Toronto.
The dependent variable is ∆̂S(yj) constructed using asking prices. The rows of the table correspond to
the components of (8). The first row shows the total jump at the million dollar threshold, the second

row shows the total response due to the policy (β̂A − β̂B), and the last two rows show the response from

above (β̂A) and below (β̂B) the threshold, respectively. Standard errors, in parentheses, are constructed
via bootstrap discussed in the main text. (∗) denotes significance at the 5% level.
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Table E8
Robustness Checks to Alternative Time Choices (Sales Price)

Sales Price

(1) (2) (3) (4) (5) (6) (7)

Jump at cut-off 0.0010∗ 0.00095∗ 0.00095 0.000096 0.0011 0.00023 0.000022
(0.00044) (0.00042) (0.00065) (0.00063) (0.00066) (0.00048) (0.00070)

Total Response 0.00057 0.00035 0.00089 0.00038 0.00024 -0.00053 -0.00054
(0.00063) (0.00043) (0.00064) (0.00093) (0.00082) (0.00050) (0.00083)

From Below -0.0000078 0.00013 0.00030 0.000031 0.00011 -0.000060 -0.00043
(0.00062) (0.00038) (0.00084) (0.0010) (0.00090) (0.00048) (0.0012)

From Above 0.00057 0.00049 0.0012 0.00041 0.00035 -0.00059 -0.00097
(0.00079) (0.00047) (0.0010) (0.0015) (0.0014) (0.00066) (0.0011)

Observations 40838 44766 22257 12634 17071 24068 19061
Excluded Bins:

L 1 1 1 1 1 1 1
R 2 2 2 2 2 2 2

Tests of Fit:

B −
∑L

l β
l
B -7.8e-06 .00013 .0003 .000031 .00011 -.00006 -.00043

(.00062) (.00038) (.00084) (.001) (.0009) (.00048) (.0012)

A−
∑R

r β
r
A -.0003 -.00014 -.00021 .00044 .00044 .00077 .00012

(.00064) (.00048) (.00078) (.0011) (.00089) (.00074) (.00082)
Joint p-val. 0.90 0.92 0.94 0.88 0.72 0.55 0.93

Impact:

∆Houses at cutoff 12.7 8.45 13.0 2.94 2.25 -5.00 -4.00

Specifications:

Poly. Order 3 3 3 3 3 3 3
Window 20 20 20 20 20 20 20
Timing Sold Date Incclude 6 Months 3 Months Jul.-Dec. 2012 Jan.-Jun. 2012 Jul.-Dec. 2012

Announce- Before Before VS. VS. VS.

ment and After and After Jul.-Dec. 2011 Jul.-Dec. 2011 Jan.-Jun. 2013

Notes: This table displays the bunching estimates of the million dollar policy for the city of Toronto.
The dependent variable is ∆̂S(yj) constructed using sales prices. The rows of the table correspond to
the components of (8). The first row shows the total jump at the million dollar threshold, the second

row shows the total response due to the policy (β̂A − β̂B), and the last two rows show the response from

above (β̂A) and below (β̂B) the threshold, respectively. Standard errors, in parentheses, are constructed
via bootstrap discussed in the main text. (∗) denotes significance at the 5% level.
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E.4.2 Classifying by Sold Date Instead of Listing Date

Table E9
Assessing Robustness to Alternative Time Choices: Sold Date

Asking Price

(1) (2) (3) (4) (5) (6) (7)

Jump at cut-off 0.0048∗ 0.0047∗ 0.0049∗ 0.0034 0.0062∗ 0.0015 -0.00086
(0.0011) (0.0011) (0.0015) (0.0019) (0.0016) (0.0012) (0.0017)

Total Response 0.0040∗ 0.0041∗ 0.0054∗ 0.0038 0.0055∗ 0.00050 -0.0019
(0.0011) (0.0011) (0.0015) (0.0020) (0.0016) (0.0013) (0.0017)

From Below -0.0018∗ -0.0017∗ -0.0022∗ -0.00080 -0.0025∗ -0.00048 0.00066
(0.00074) (0.00072) (0.0010) (0.0014) (0.0010) (0.00091) (0.0011)

From Above 0.0022∗ 0.0024∗ 0.0033∗ 0.0030 0.0030∗ 0.000021 -0.0012
(0.00087) (0.00088) (0.0012) (0.0016) (0.0013) (0.0011) (0.0013)

Observations 40838 44545 22128 12467 18280 24175 18675
Excluded Bins:

L 4 4 4 4 4 4 4
R 5 5 5 5 5 5 5

Tests of Fit:

B −
∑L

l β
l
B -.001 -.001 -.0021 .0012 -.0012 .00091 .00054

(.0013) (.0013) (.0019) (.0025) (.0018) (.0017) (.0019)

A−
∑R

r β
r
A .003 .0032∗ .0046∗ .0046 .0038 -.0011 -.0012

(.0015) (.0015) (.0022) (.0027) (.0022) (.0018) (.0022)
Joint p-val. 0.13 0.091 0.084 0.24 0.22 0.72 0.84

Impact:

∆ Houses at cutoff 88.3 97.8 75.8 29.8 55.7 5.01 -14.6

Specifications:

Poly. Order 3 3 3 3 3 3 3
Window 20 20 20 20 20 20 20
Timing Baseline Include 6 Months 3 Months July-Dec. 2012 Jan.-Jun. 2012 July.-Dec. 2012

Announcement Before Before VS. VS. VS.

and After and After July-Dec. 2011 July-Dec. 2011 Jan-June 2013

Notes: This table displays the bunching estimates of the million dollar policy for the city of Toronto.
The dependent variable is ∆̂S(yj) constructed using asking prices. The rows of the table correspond to
the components of (8). The first row shows the total jump at the million dollar threshold, the second

row shows the total response due to the policy (β̂A − β̂B), and the last two rows show the response from

above (β̂A) and below (β̂B) the threshold, respectively. Standard errors, in parentheses, are constructed
via bootstrap discussed in the main text. (∗) denotes significance at the 5% level.

26



Table E10
Assessing Robustness to Alternative Time Choices: Sold Date

Sales Price

(1) (2) (3) (4) (5) (6) (7)

Jump at cut-off 0.0010∗ 0.00099∗ 0.00057 -0.00026 0.0010 0.00049 0.00014
(0.00044) (0.00044) (0.00059) (0.00065) (0.00062) (0.00047) (0.00068)

Total Response 0.00057 0.00065 0.00099 0.00098 0.00053 -0.00029 -0.00053
(0.00056) (0.00054) (0.00072) (0.00086) (0.00074) (0.00063) (0.00079)

From Below -0.0000078 0.00020 0.00095 0.0017 0.00013 -0.00058 -0.00053
(0.00059) (0.00061) (0.00086) (0.0011) (0.00082) (0.00069) (0.00088)

From Above 0.00057 0.00085 0.0019 0.0027∗ 0.00066 -0.00087 -0.0011
(0.00075) (0.00076) (0.0011) (0.0013) (0.00099) (0.00091) (0.0011)

Observations 40838 44545 22128 12467 18280 24175 18675
Excluded Bins:

L 1 1 1 1 1 1 1
R 2 2 2 2 2 2 2

Tests of Fit:

B −
∑L

l β
l
B -7.8e-06 .0002 .00095 .0017 .00013 -.00058 -.00053

(.00059) (.00061) (.00086) (.0011) (.00082) (.00069) (.00088)

A−
∑R

r β
r
A -.0003 -.00033 -.00099 -.0013 .00026 .0011 .00024

(.00056) (.00057) (.0008) (.0011) (.00073) (.00069) (.00081)
Joint p-val. 0.85 0.85 0.41 0.28 0.89 0.27 0.83

Impact:

∆Houses at cutoff 12.7 15.7 13.8 7.61 5.34 -2.89 -4.17

Specifications:

Poly. Order 3 3 3 3 3 3 3
Window 20 20 20 20 20 20 20
Timing Baseline Include 6 Months 3 Months July-Dec. 2012 Jan.-Jun. 2012 July.-Dec. 2012

Announcement Before Before VS. VS. VS.

and After and After July-Dec. 2011 July-Dec. 2011 Jan-June 2013

Notes: This table displays the bunching estimates of the million dollar policy for the city of Toronto.
The dependent variable is ∆̂S(yj) constructed using sales prices. The rows of the table correspond to
the components of (8). The first row shows the total jump at the million dollar threshold, the second

row shows the total response due to the policy (β̂A − β̂B), and the last two rows show the response from

above (β̂A) and below (β̂B) the threshold, respectively. Standard errors, in parentheses, are constructed
via bootstrap discussed in the main text. (∗) denotes significance at the 5% level.
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F Supplemental Material for the Distribution Decom-

position

F.1 Robustness of the Price Counterfactual

Figure F1 presents the price counterfactual differences for a variety of alternative specifica-
tions. The leftmost plots in panels (a) and (b) of Figure F1 replicate the price counterfactual
differences in Figure 9, but with a narrower range on the vertical axis. The adjacent plots
display the price counterfactual differences when we restrict the set of transactions to just
six months before and after the implementation of the policy. We repeat the exercise again
using only three-month pre- and post-policy periods. The differences attributed to market
conditions are smaller when we consider shorter pre- and post-policy periods (not shown),
but the implied price counterfactual differences remain close to zero and statistically in-
significant. To generate the rightmost plots of panels (a) and (b) of Figure F1, labeled
“falsification”, we perform the same procedure outlined above using only pre-policy transac-
tion data. We use the same two pre-policy years as the placebo tests in Table E3 to create
the black line. The superimposed grey lines display the six- and three-month price counter-
factual differences again using two pre-policy periods, and the confidence bands correspond
to the 6-month sample periods. After accounting for shape-preserving market trends as well
any changes in the composition of homes sold, the residual price counterfactual differences
are relatively small and not statistically significantly different from zero, as expected. This
provides some reassurance that the evolution of a price distribution in a booming housing
market can be summarized reasonably well by scale and shift parameters, after controlling
for house characteristics.

../Figures-dfl-T2-General/Figure-Price-Cntf-900000-Toronto-CDF.pdf

(a) City of Toronto

../Figures-dfl-T2-General/Figure-Price-Cntf-900000-Central-CDF.pdf

(b) Central District

Figure F1
Price Counterfactual Robustness (CDFs)

Notes: The leftmost plots in panels (a) and (b) replicate the price counterfactual differences in Figure 9.
The remaining plots present price counterfactual differences for a variety of alternative specifications. The
cut-off for estimating market trends is set to $900K. The shaded area represents a 95% confidence interval,
obtained via bootstrap.
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F.2 Supplemental Material: Decomposition of PDFs

As an alternative to displaying CDFs and their differences, the main results from Figure 9
can be displayed in terms of PDFs or histograms. Figure F2 plots the PDFs, their differences,
and the decomposition for both the city of Toronto and the central district. An extensive
margin response would be evident if the price counterfactual differences indicated fewer
homes sold at prices above the $1M threshold. An intensive margin response would display
fewer homes sold at high prices, but more sales at prices closer to $1M. Neither phenomenon
is visually evident in the price counterfactual differences plotted in Figure F2. Figure F3
shows robustness to alternative specifications.
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Figure F2
Examining Policy Responses Above $1M (PDFs)

Notes: Panel (a) of the figure plots the pre- and post-policy sales price PDFs, their differences, and the
decomposition based on house characteristics, market conditions, and any residual price counterfactual
differences for the city of Toronto. Panel (b) represents the same procedure for the central district. The
cut-off for estimating market trends is set to $900K. The shaded area represents a 95% confidence interval,
obtained via bootstrap.
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(a) City of Toronto
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(b) Central District

Figure F3
Price Counterfactual Robustness (PDFs)

Notes: The leftmost plots in panels (a) and (b) replicate the price counterfactual differences in Figure F2.
The remaining plots present price counterfactual differences for a variety of alternative specifications. The
cut-off for estimating market trends is set to $900K. The shaded area represents a 95% confidence interval,
obtained via bootstrap.

F.3 Distribution Decomposition Simulations

Here, we apply the distribution decomposition methodology to simulated data that feature
no policy response, an extensive margin response, and an intensive margin response to further
justify assumptions (1) and (2) in Section 5.3.

Two samples of 20,000 log sales prices are generated from the logistic distribution with
mean and scale parameters estimated by maximum likelihood to fit the observed sales
price distributions. The sample designated “pre-policy” features mean and scale param-
eters 13.3345 and 0.2489, whereas the “post-policy” distribution sets the mean to 13.3865
and the scale to 0.2434. Figure F4a plots the two CDFs and their differences, which is
then decomposed into differences that are attributed to “market conditions” and those that
are not (i.e., “price counterfactual” differences).48 Not surprisingly given the absence of
any additional effect(s) beyond the two parameters of the logistic distribution, the price
counterfactual differences are everywhere close to zero. For this simulation exercise, the
shape-preserving change in the distribution is well-summarized by a linear transformation
applied to the pre-policy quantile function. Moreover, the intercept and slope coefficients
are estimated reasonably well using only prices below a cut-off of $900K.

An extensive margin response is then simulated by randomly dropping 20% of prices
above $1M in the post-policy sample. The same procedure is implemented and the results
are displayed in Figure F4b. As argued above, the extensive margin response is visually
identifiable because the price counterfactual difference diverges above zero near the $1M
threshold. An intensive margin response is then simulated (from the original post-policy
sample) by reducing every price above $1M from p to $1M + 0.7(p− $1M). In other words,

48There are no differences attributed to “house characteristics” as the composition of homes is assumed
to be unchanged for the purposes of these simulations.
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prices in excess of $1M are lowered by 30% of this excess amount. Figure F4c displays
the CDFs and the decomposition of their differences. Once again, the price counterfactual
differences diverge above zero, this time slightly above the $1M threshold. Each of these
simulated responses cause the average post-policy house price to drop by only about 2%
relative to the original post-policy sample of simulated prices, yet these simulations affirm
that evidence of extensive and intensive margin responses can be readily uncovered under
the proposed methodology.
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(a) Simulation 1: No Policy Response
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(b) Simulation 2: Extensive Margin Response
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(c) Simulation 3: Intensive Margin Response

Figure F4
Distribution Decomposition Applied to Simulated Data

Notes: This figure displays results from applying our distribution decomposition to simulated data. Panel
(a) contains the simulated prices under the assumption that there was neither an extensive nor intensive
margin effect. Panel (b) simulates an extensive margin response by dropping 20% of the prices above $1M.
Panel (c) simulates an intensive margin response by reducing every price in excess of $1M by 30% of this
excess amount.
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F.4 Robustness to a Lower Cut-off: $800K

As a final robustness check, we consider estimating the intercept and coefficient parameters
using only transaction data further below the $1M threshold. More specifically, we lower the
cut-off, τ , from $900K to $800K to be sure that the differences in distributions we ascribe
to market conditions are not contaminated by unintended consequences of the million dollar
policy in price segments further below the policy threshold. Figure F5 in Appendix F.4
displays the results with τ = $800K. The resulting market conditions and price counterfac-
tual differences are remarkably similar to those in Figure 9, except the confidence bands are
larger when the lower cut-off is applied.

../Figures-dfl-T2-houses-GTA2/800000/Figure-Extensive-CDFs-post.pdf

(a) City of Toronto

../Figures-dfl-T2-houses-Central/800000/Figure-Extensive-CDFs-post-central.pdf

(b) Central District

Figure F5
Examining Policy Responses Above $1M: Robustness to a Lower Cut-off

Notes: Panel (a) of the figure plots the pre- and post-policy sales price distributions, their differences, and
the decomposition based on house characteristics, market conditions, and any residual price counterfactual
differences for the city of Toronto. Panel (b) represents the same procedure for the central district. The
cut-off for estimating market trends is set to $800K. The shaded area represents a 95% confidence interval,
obtained via bootstrap.

33



G Difference-in-Differences Results

In this appendix, we consider a difference-in-differences (diff-in-diff) research design that
(i) exploits market segmentation by geography to cleanly identify policy effects and (ii)
leverages the time dimension of the analysis to assess the parallel pre-trends assumption.
We employ two new left-hand-side variables (namely, sales counts and the log first-difference
in quarterly house price indices) for which the parallel pre-trends assumption appears to
hold. Our diff-in-diff approach builds on a recent literature that exploits ex ante treatment
intensity across geographies to study policies implemented at the national level (Mian and
Sufi 2012; Pierce and Schott 2016; Berger, Turner, and Zwick 2020). A natural extension of
this literature to the $1M policy yields a continuous treatment intensity proxy based on the
share of homes sold over $1M two years prior to the policy by FSA (three-digit zip code).
With this treatment variable in hand, we then estimate a diff-in-diff model using data from
central Toronto only, and again for all of Toronto for robustness.49 The diff-in-diff regression
of interest becomes:

zkt =
∑

y 6=2012Q2

βt× 1{y = t}× Intensityk +
∑

y 6=2012Q2

ηt× 1{y = t}×X′k + τk + τt + εkt, (G.1)

where zt is the LHS variable aggregated to the FSA level for each FSA (indexed by k) at time
t. The ex ante treatment intensity variable, Intensityk, represents the share of homes sold
over $1M in FSA k two years before the policy. The parameter of interest is the intensity
coefficient, βt, which compares zt across FSAs that differ in treatment intensity. In other
words, it measures the difference in zt between high- and low-intensity FSAs (first difference),
relative to this same difference evaluated in 2012Q2, the quarter before the implementation
of the $1M policy (second difference). To ease the interpretation of the regression estimates,
we scale Intensityk by its standard deviation. With this scaling, βt measures the change in zt
due to a one standard deviation increase in Intensityk, relative to the change in z in 2012Q2
also associated with a one standard deviation increase in Intensityk.

FSA level controls, Xk, consist of the average lot size and its square measured two years
before the policy by FSA. We interact Xk with time fixed effects so that the impact of
average property size on the LHS variable can vary with time. Finally, τk and τt are FSA
and time fixed effects, and robust standard errors are clustered at the FSA level.

The first LHS variable we consider is the number of homes sold (sales counts) by year-
quarter. When the LHS variable is sales counts, the identifying assumption is that the trend
in sales counts in FSAs with low intensity (fewer ex ante $1M sales) can provide the coun-
terfactual for the trend in sales counts for high intensity FSAs. As the excluded dummy in
equation (G.1) corresponds to 2012Q2, the diff-in-diff parallel pre-trends assumption main-

49Homes in the central district constitute the bulk of $1M homes and are concentrated geographically,
which lends itself well to satisfying the diff-in-diff parallel pre-trends assumption. Comparisons of homes
across central and suburban Toronto are less appealing within this diff-in-diff framework given the natural
urban-suburban differences and the relative scarcity of $1M homes in suburban Toronto. Be that as it may,
our results are similar if we use all of Toronto, as shown below.
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tains that the change in sales counts in each year-quarter during the pre-treatment period
associated with a change in Intensityk is not statistically different from this same change
evaluated in 2012Q2, the quarter before policy implementation.

Intuitively, if the $1M policy tempered activity in high-price segments of the market
(i.e., an extensive margin response), then we would expect the number of sales in these more
expensive FSAs to fall. Figure G1, panel A plots βt when the LHS variable is sales counts by
FSA. Prior to the implementation of the $1M policy (left of the black-dashed vertical line),
there was nearly no difference in the number of homes sold across high- and low-intensity
FSAs relative to the intensity coefficient evaluated in 2012Q2, congruent with the diff-in-diff
parallel pre-trends assumption. Indeed, the diff-in-diff estimates to the left of the black-
dashed vertical line indicate that a one standard deviation increase in Intensityk corresponds
with just an extra 1.57 homes sold on average by year-quarter during the pre-treatment
period, relative to the impact of Intensityk on sales counts in 2012Q2. These pre-treatment
diff-in-diff estimates are also all statistically insignificant, where the largest cluster-robust
t-statistic associated with these estimates is just 1.29.

Following the implementation of the million dollar policy, there was likewise no statisti-
cally significant change in the path of year-quarter sales counts associated with an increase
in Intensityk, indicating that the policy did not impact the number of homes sold in high in-
tensity FSAs. In the first quarter following policy implementation (2012Q3), a one standard
deviation increase in Intensityk corresponds with just 4.28 extra homes sold (cluster-robust
S.E. = 4.38; t-statistic = 0.98), relative to impact of a one standard deviation increase in
Intensityk in 2012Q2. The remaining point estimates for 2012Q4–2013Q1 are also small and
not statistically significant, indicating that the million dollar policy did not impact sales
counts across high- and low-intensity FSAs in these later periods.

Next, in panel B of Figure G1, we let the LHS variable be the log-difference in quarterly
FSA hedonic house price indices. One of the objectives of the million dollar policy was
to curb house price appreciation in high-price segments of the market. If successful in
achieving this objective (i.e., an intensive margin response), the million dollar policy would
translate into subdued house price growth in FSAs with higher Intensityk. To examine
house price growth within our diff-in-diff framework, we first estimate a hedonic regression
to adjust FSA year-quarter house prices for property-level characteristics using transaction
level data. Then we take the log first-difference of each FSA house price index to use as
the LHS variable in equation (G.1). The results in panel B of Figure G1 first indicate that,
during the pre-treatment period (left of the black-dashed vertical line), increases in ex ante
treatment intensity are uncorrelated with pre-treatment house price growth, after accounting
for the relationship between ex ante treatment intensity and house price growth in 2012Q2,
consistent with the diff-in-diff parallel pre-trends assumption. Moreover, there is likewise
no statistically significant difference in the trend of house price growth between FSAs with
differential intensity during the treatment period. Hence, the million dollar policy does not
correspond with a reduction in house price growth following the implementation of the policy
in neighborhoods rich with $1M homes.

Finally, Figure G2 displays similar results when we include all of Toronto.
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Figure G1
Central Toronto Diff-in-Diff Estimates
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Figure G2
All Toronto Diff-in-Diff Estimates
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